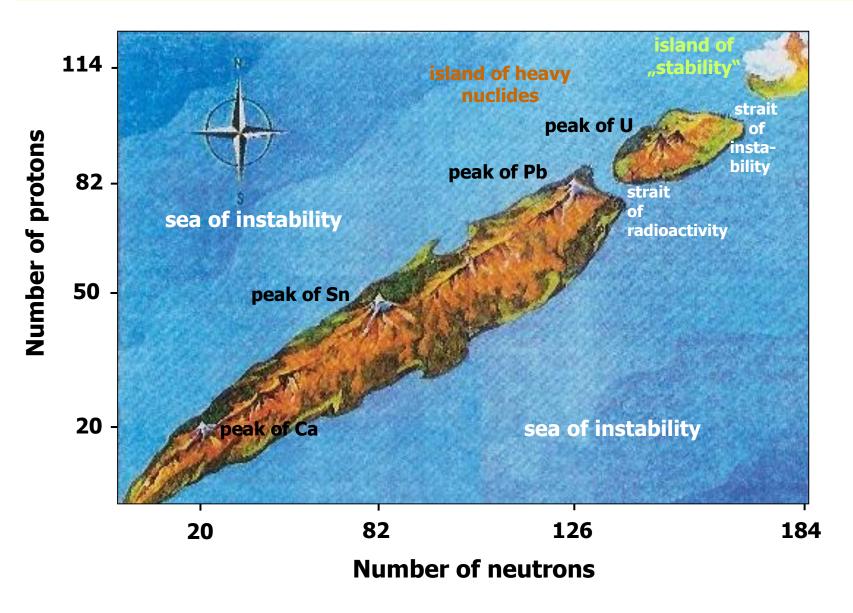

Chemie radioaktivních prvků část 3 - transaktinoidy

J. John

Periodic table of the elements



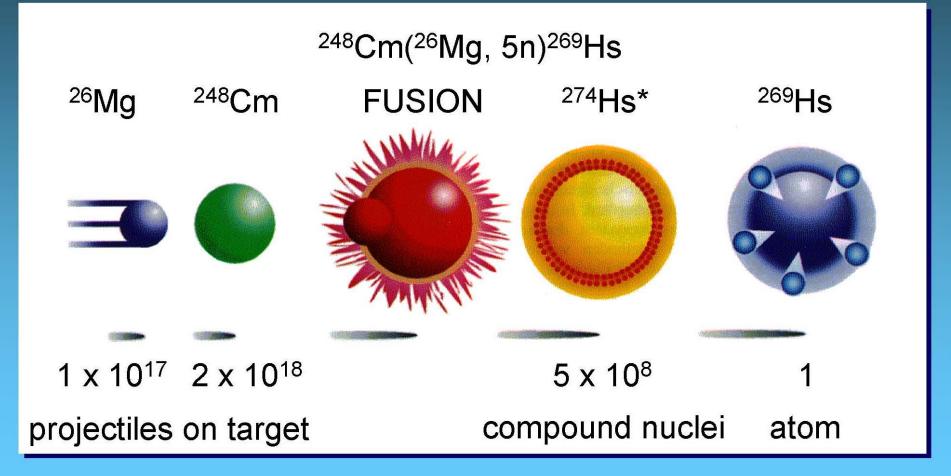
Lanthanides	57	⁵⁸	⁵⁹	⁶⁰	61	⁶²	⁶³	64	⁶⁵	66	67	68	69	⁷⁰	⁷¹
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Actinides	⁸⁹ Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	⁹⁷ Bk	P8 Cf	Es	Fm	Md	¹⁰² No	103 Lr

Superheavy Elemens - Why Study?

- Test validity of the Extrapolations of the Periodic Table
- Determine the Influence of Relativistic Effects on Chemical Properties
- Help to Predict the Chemical Properties of the Heavier Elements
- Determine Nuclear Properties of the Heaviest Elements

Superheavy Elemens - Stability?

SHE - produktion


Hot fusion – light projectile on heavy target, e.g. $^{248}Cm + ^{22}Na \rightarrow ^{266}Sg + 4n$

- Compound nucleus, in this case ²⁷⁰Sg, is highly excited and a certain number of neutrons "evaporates". Each of these neutrons takes with it some 10 MeV of energy.
- Cold fusion medium weight projectile on lighter target, e.g. ${}^{208}Pb + {}^{50}Ti \rightarrow {}^{257}Rf + n$
- In this case is the compound nuclues not so highly excited and only 0-1 neutrons "evaporate".

Accelerators – Dubna, Darmstadt, Berkeley and RIKEN

Hot fusion with ⁴⁸Ca ions as projectile allowed to reach the "island of stability" around Z = 114 and N = 182. (N/Z = 1.6)

Synthesis of heavy elements: Hassium (Z=108)

Superheavy Elemens - Current Status

Atomic number	Name	Chemical symbol
104	rutherfordium	Rf
105	dubnium	Db
106	seaborgium	Sg
107	bohrium	Bh
108	hassium	Hs
109	meitnerium	Mt
110	darmstadtium	Ds
111	roentgenium	Rg
112	copernicium	Cn
113	nihonium	Nh
114	flerovium	FI
115	moscovium	Мс
116	livermorium	Lv
117	tenessin	Ts
118	oganesson	Og

104 – Rutherfordium (Rf)

1964: Dubna (Russia), Flerov et al.

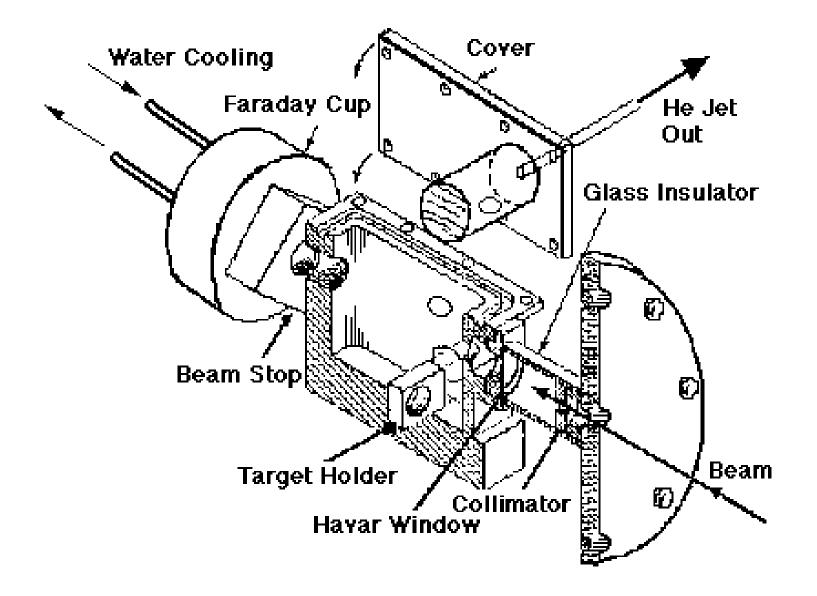
²⁴²Pu(²²Ne,4n)²⁶⁰104 $_^{SF, 0.3 s}$ σ ≈ 0.2 nb 1 at/5 hr **Kurchatovium (Ku)**

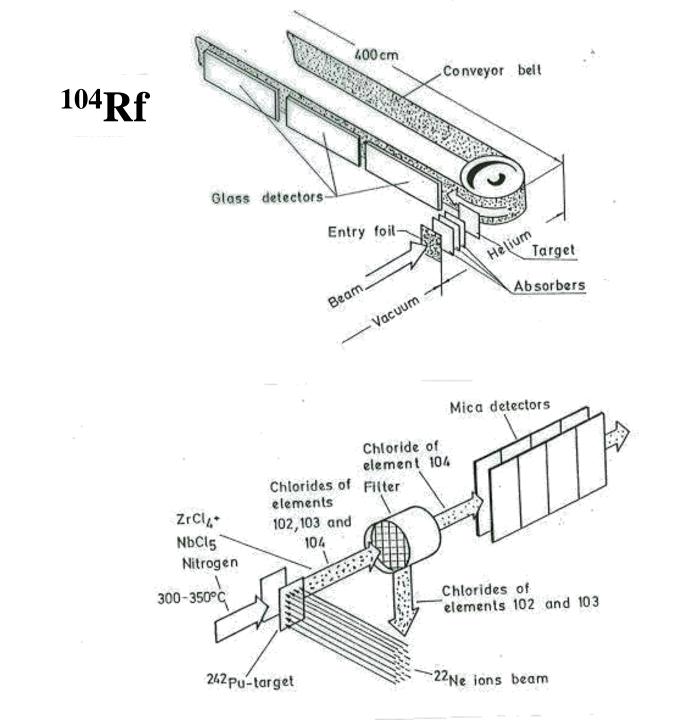
1969: Berkeley (USA), Ghiorso et al. ²⁴⁹Cf(^{12,13}C,4n)^{257,259}104 $\xrightarrow{\alpha}$

Rutherfordium (Rf)

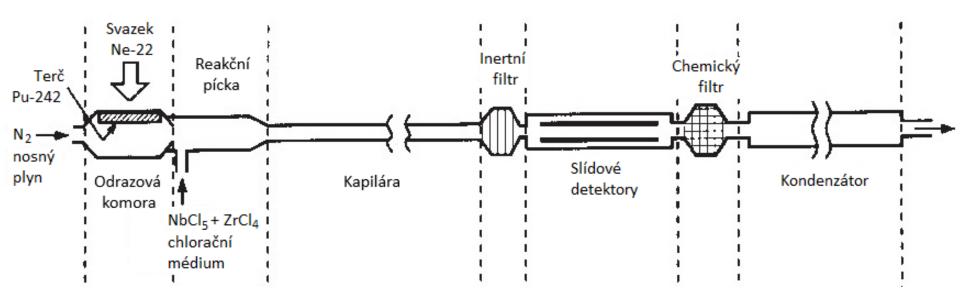
Final determination of Z for ²⁵⁷104 – coicidence of K_X of No with α from ²⁵⁷104 Today: A = 253-262 ²⁶¹104 T_{1/2} = 1.1 min α ²⁴⁸Cm(¹⁸O,5n)

Chemistry


Eka-hafnium.


Dubna – volatile chloride (Zvára et al., 1966) (?)

Berkeley & Oak Ridge (Silva, 1970):

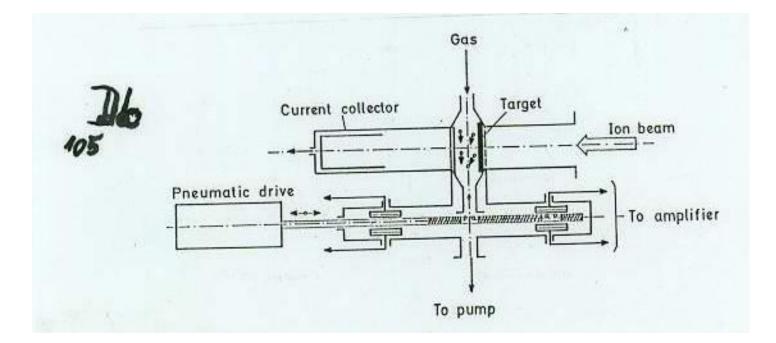

Dowex 50 + α -HiB – behaves like IV, <u>NOT</u> III study performed with 100 atoms of ²⁶¹Rf

SHE – Rf: Target System

¹⁰⁴**Rf**

105 – Dubnium (Db)

1968: Dubna (Russia), Flerov et al.


²⁴³Am(²²Ne,4n)²⁶¹105 $__{-\frac{\alpha}{2},0,1-\frac{0.3}{2},0,0}^{\alpha}$ ²⁵⁷Lr ²⁴³Am(²²Ne,5n)²⁶⁰105 $__{-\frac{\alpha}{2},0,0,1,0}^{\alpha}$ ²⁵⁶Lr \Rightarrow Nielsbohrium (Ns) $E_{\alpha} = 9.4 \text{ MeV}$ $E_{\alpha} = 9.7 \text{ MeV}$

1970: Berkeley (USA), Ghiorso et al. ${}^{249}Cf({}^{15}N,5n){}^{260}105 \xrightarrow{\alpha,1.6 s} {}^{256}Lr \longrightarrow$ "Proof" – coincidence 105 - Lr \Rightarrow Hahnium (Ha)

Final determination of Z (1977) – coincidence of L_X of Lr with α from ²⁶⁰105 Today: A = 255-262 ²⁶²Db T_{1/2} = 34 s 78 % SF, 22 % α ²⁴⁹Bk(¹⁸O,5n)

Chemistry

Dubna – gas chromatography T \in <50; 350> °C Volatilily of chlorides: **HfCl₄ < DbCl_x < NbCl₅** \Rightarrow Eka-tantalum (Zvára et al., 1970-75)

106 – Seaborgium (Sg)

Forecast: Eka-tungsten 1974: Berkeley (USA), Ghiorso et al. ${}^{249}Cf({}^{18}O,4n){}^{263}106 \xrightarrow{\alpha,0.9 \text{ s}} \qquad E_{\alpha} = 9.06 \text{ MeV}$ "Proof" – correlation of decays ${}^{263}106 \rightarrow {}^{259}\text{Rf} \rightarrow {}^{255}\text{No}$

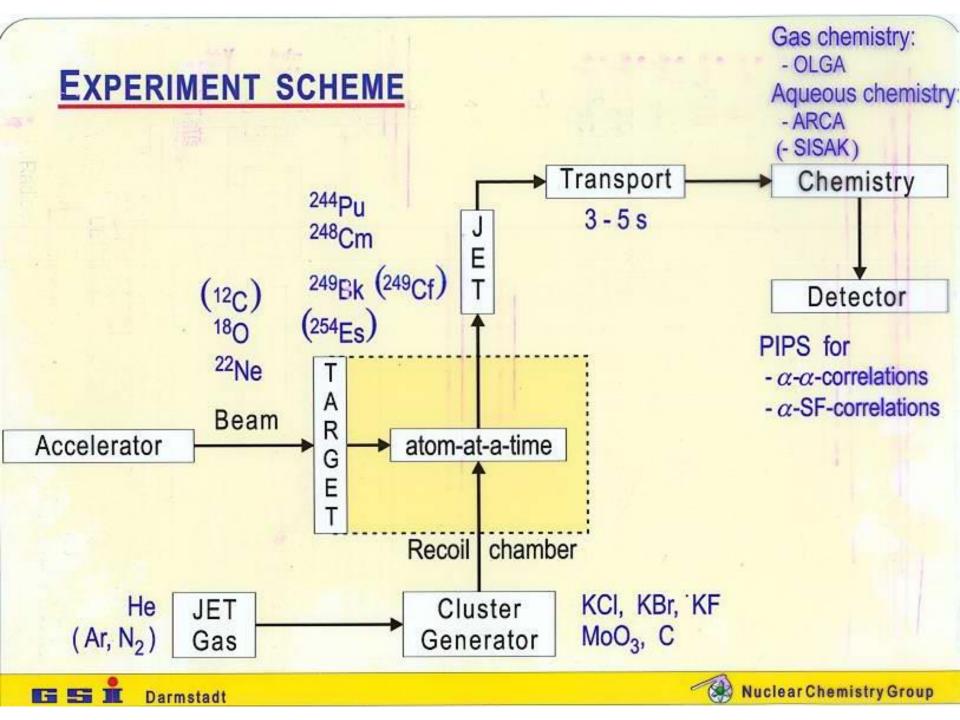
1974: Dubna (Russia), Oganesyan et al. ^{207,208}Pb(⁵⁴Cr,2-3n)²⁵⁹106 $\xrightarrow{SF,?ms}$ (probably ²⁶⁰106 $\xrightarrow{\alpha}$ $\xrightarrow{256}$ Rf \xrightarrow{SF})

Today:
$$A = 259-263$$

 ^{263}Sg $T_{1/2} = 0.9$ s α $^{249}Cf(^{18}O, 4n)$

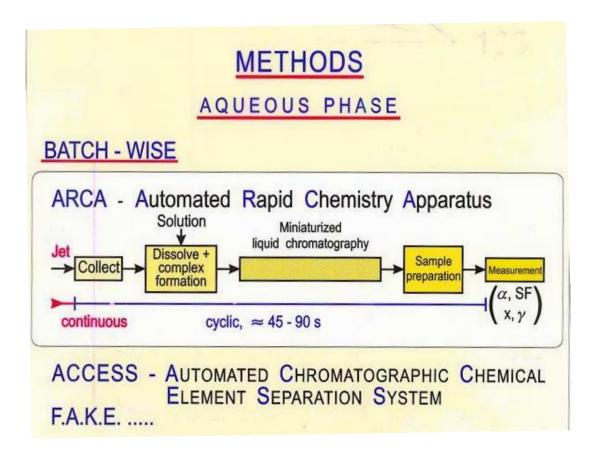
Chemistry

Theoretical forecast: like W or Mo, more complexes Experimental: Atom – at – a - time chemistry ⇒ member of group 6 of the PTE

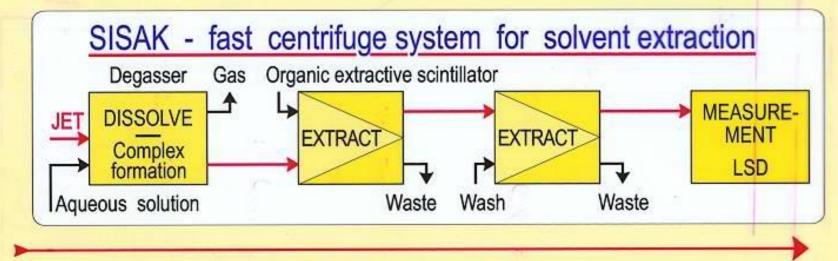

Jména prvků se Z = 102–109 navrhovaná v letech 1992 až 1997

Ζ	GSI 1992	ACS 1994	IUPAC 1994	IUPAC 1995	IUPAC 1997
102	joliotium	nobelium	nobelium	flerovium	nobelium, No
103	lawrencium	lawrencium	lawrencium	lawrencium	lawrencium, Lr
104	meitnerium	rutherfordium	dubnium	dubnium	rutherfordium, Rf
105	kurchatovium	hahnium	joliotium	joliotium	dubnium, Db
106	rutherfordium	seaborgium	rutherfordium	seaborgium	seaborgium, Sg
107	nielsbohrium	nielsbohrium	bohrium	nielsbohrium	bohrium, Bh
108	hassium	hassium	hahnium	hahnium	hassium, Hs
109	hahnium	meitnerium	meitnerium	meitnerium	meitnerium, Mt

"ATOM - AT - A - TIME" CHEMISTRY


NECESSITIES

- high production rate
- fast transport
- high yield
- continuous or high repetition rate
- specific chemistry
- specific identification


NUCLEAR SYNTHESES cross production reaction section, rate* ^{26}Mg + $^{248}Cm \approx 10 \text{ pb}, 5 \text{ d}^{-1}$ Z = 108 (estim.) ²⁶⁹Hs 9 s 22 Ne + 249 Bk $\approx 60 \text{ pb}, 1 \text{ h}^{-1}$ 4n Z = 107 ²⁶⁷Bh 17 s 22 Ne + 248 Cm ≈ 240 pb, 5 h⁻¹ 5n 4n \approx 50 pb, 1 h⁻¹ Z = 106²⁶⁵Sg ²⁶⁶Sg 21 s 4 s (¹⁹F + ²⁴⁸Cm 2 nb, <1 min⁻¹) Z = 105 5n 6 nb, 2 min⁻¹ ¹⁸O + ²⁴⁹Bk 4n 10 nb, 3 min⁻¹ 262Db 263Db 27 s ¹⁸O + ²⁴⁸Cm 5 nb, 2 min⁻¹ Z = 1045n ²²Ne + ²⁴⁴Pu 3 nb, 1 min⁻¹ ²⁶¹Rf * 0.8 mg/cm² target, 3 x 10¹² s⁻¹ beam particles 78 s

Aqueous chemistry with Transactinides

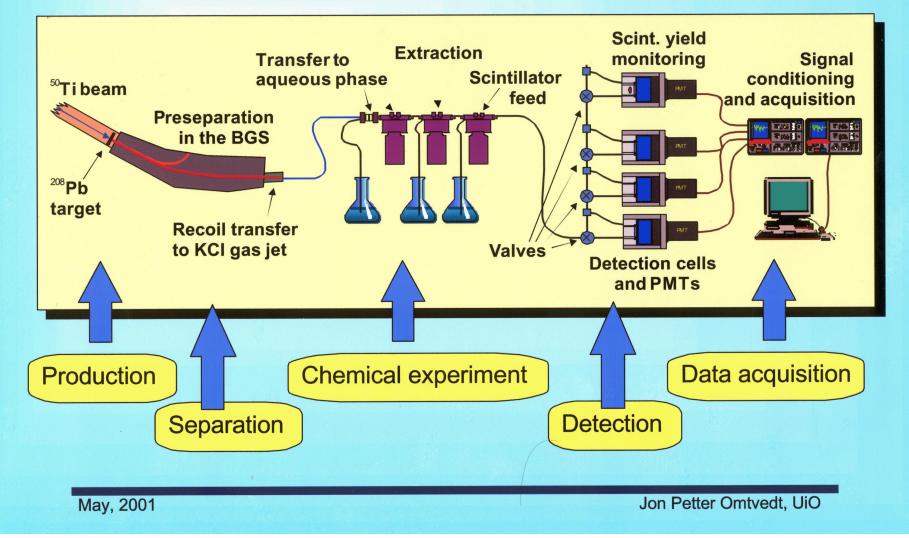
Continuous Separation and Detection

SISAK III $3 s \leq T_{1/2} \leq 30 s$

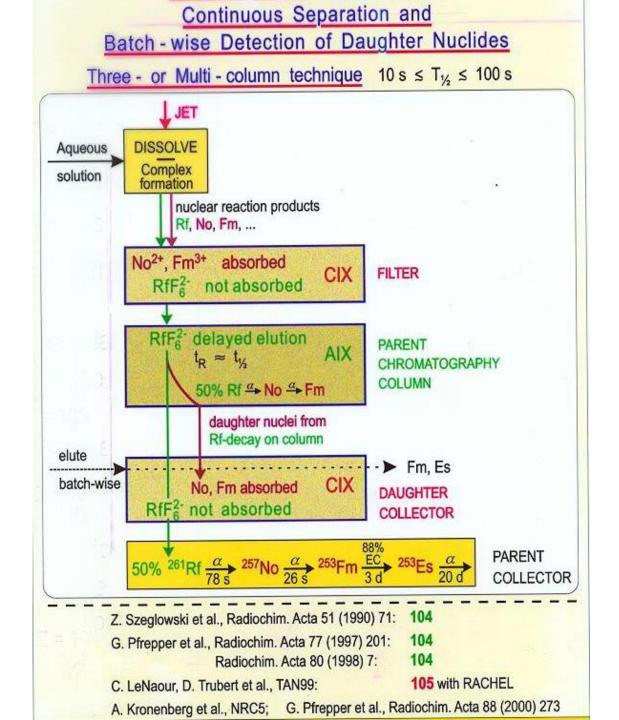
continuous, $\approx 0.1 - 10$ s

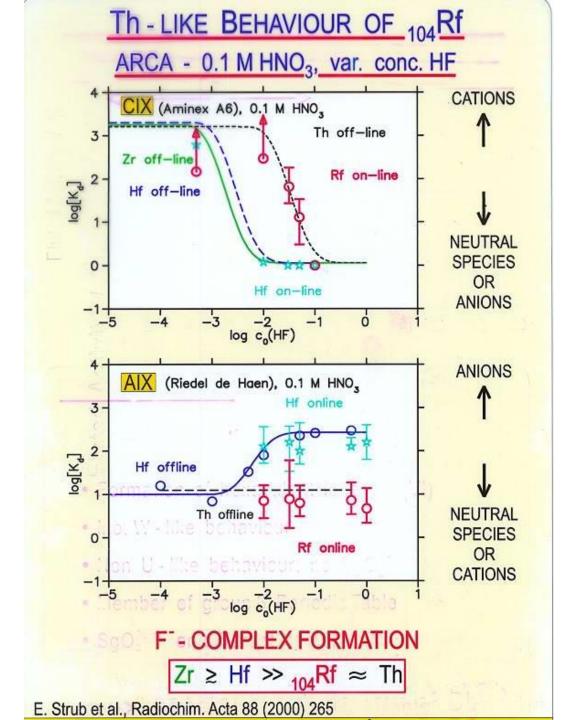
Oslo - Göteborg - Mainz - Collaboration

H. Persson et al., Radiochim. Acta 48 (1989) 177


J. Alstad et al., JRNC 189 (1995) 133

B. Wierczinski et al., NIM A 370 (1996) 532

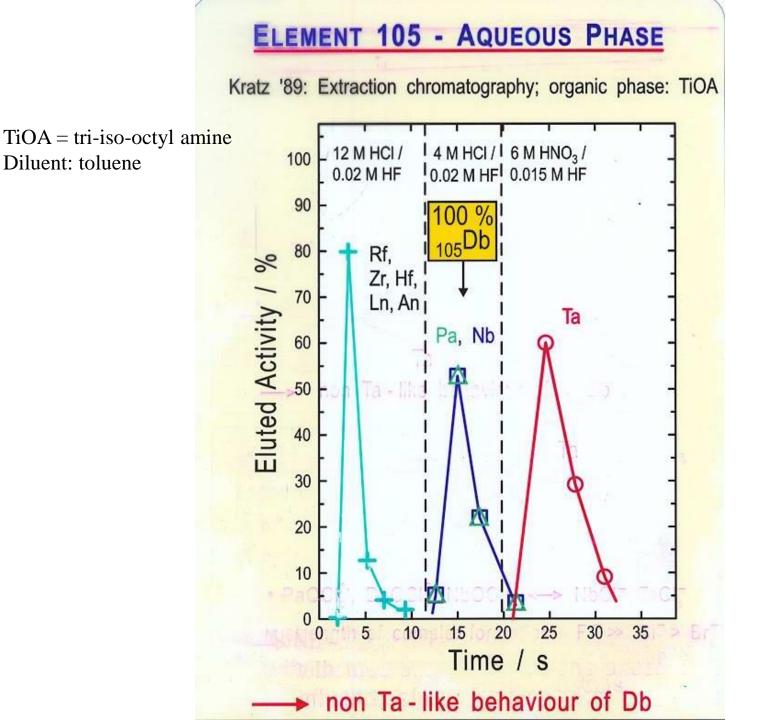

🔳 Darmstadt

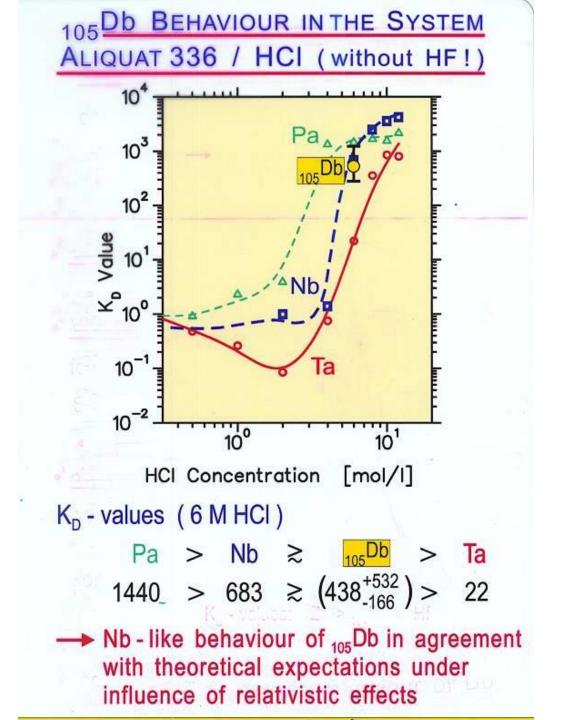


Db

THEORETICAL CALCULATIONS

V. Pershina: calculation of ∆E of the complex formation reaction:


(z) $M(OH)_{y}^{(z-y)} + aH^{+} + aCl^{-} \leftrightarrow M(OH)_{y-a}Cl_{a}^{(z-y)} + aH_{2}O$


Competition between hydrolysis and complex formation

Complex formation: Pa > Nb > 105 > Ta Hydrolysis of compounds: Ta > 105 > Nb > Pa

Predicted extraction sequence:

Pa > Nb ≥105 > Ta

Sg

AQUEOUS CHEMSTRY WITH SEABORGIUM

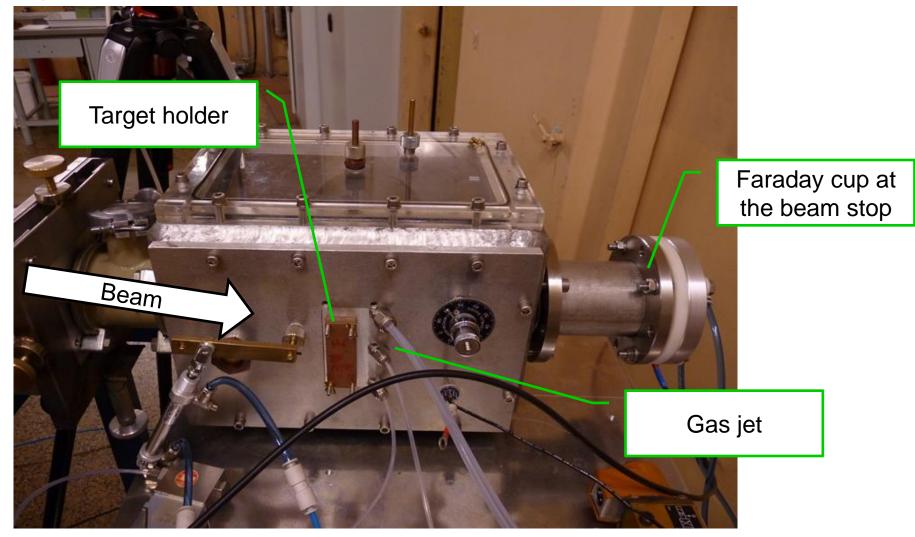
one - atom - per - day liquid chromatography

- hexavalent ions; Sg (VI)
- member of group 6
- <u>non</u> U like behaviour; no SgO₂²⁺

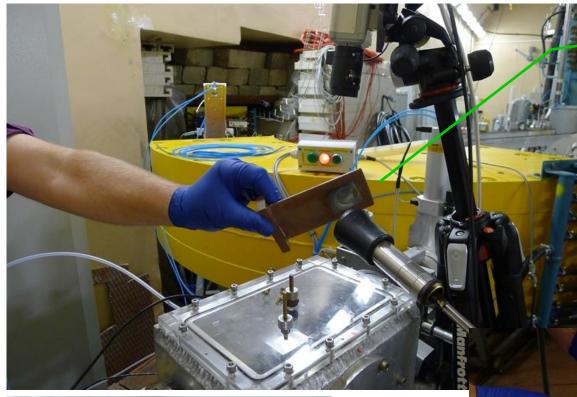
 <u>Mo, W - like behaviour</u> in HNO₃ / <u>HF</u> - solution formation of neutral and / or anionic complexes Sg O₂ F₂ and / or Sg O₂ F₃⁻ likely; <u>no</u> SgO₄²⁻

• non W - like behaviour in pure HNO₃ no formation of neutral or anionic complexes no SgO₄²⁻ formation of Sg (OH)₄ (H₂O)₂²⁺ and / or Sg (OH)₅ (H₂O)⁺ likely • decreasing hydrolysis: Mo > W > Sg

AQUEOUS CHEMISTRY OF TRANSACTINIDES

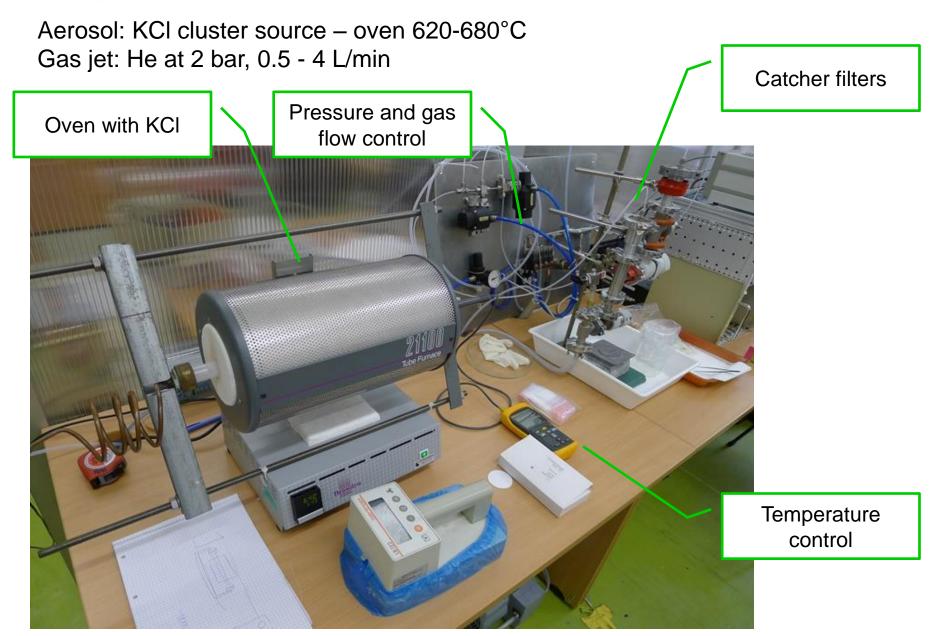

SUMMARY

- * atom at a time chemistry
- * 104Rf, 105Db, 106Sg investigated
- members of group 4 to 6 of the PTE
- structure of the PTE is (still?) intact
- relativistic effects are strongly influencing the chemical properties
- chemical properties are in detail no more predictable with purely empirical methods
- chemical properties are in detail predictable combining empirical models with modern, relativistic molecular calculations


SHE homologues synthesis and gas-jet transport at U-120M accelerator in Rež

Experimental set-up – Řež

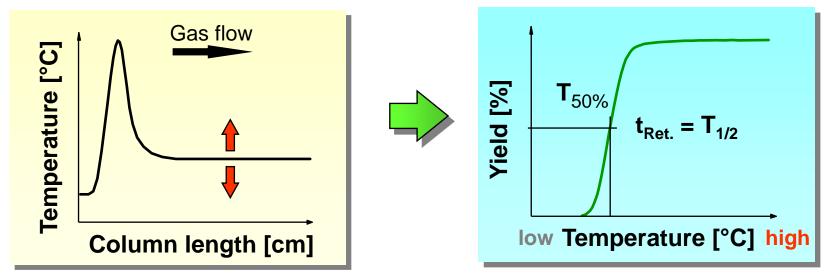
Target chamber at cyclotrone U-120 Cyclotron beam: 100-500 nA ³He²⁺ @ 47 MeV


Experimental set-up – Řež

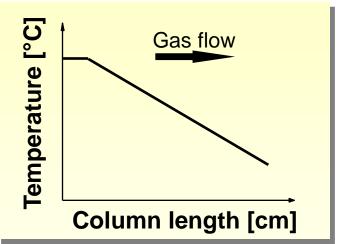
Lu 0.025 m Mar. 2011 Target activity check

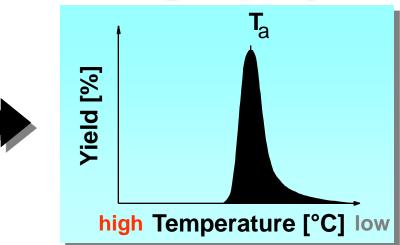

Removing the catcher foil

Experimental set-up – Řež

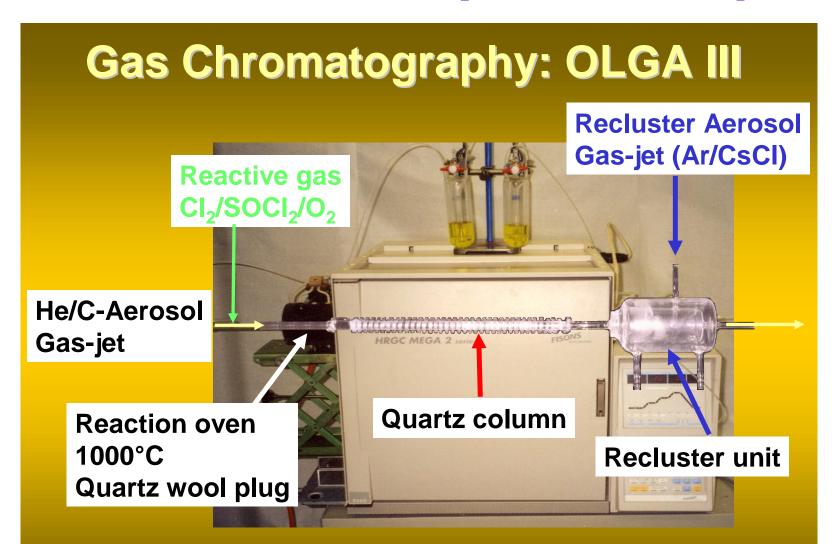

Gas Phase Chemistry with Transactinides

Gas Phase Chemistry Community:





Isothermal Chromatography:


Thermochromatography:

OLGA

a device to measure retention temperatures of volatile species

Working Hypothesis

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

 H
 He

 Li
 Be
 B
 C
 N
 O
 F
 Ne

 Na Mg
 Al
 Si
 P
 S
 Cl
 Ar

 K
 Ca
 Sc
 Ti
 V
 Cr Mn Fe
 Co
 Ni
 Cu
 Zn
 Ga
 Ge
 As
 Se
 Br
 Kr

 Rb
 Sr
 Y
 Zr
 Nb Mo
 Tc
 Ru
 Rh
 Pd
 Ag
 Cd
 In
 Sn
 Sb
 Te
 I
 Xe

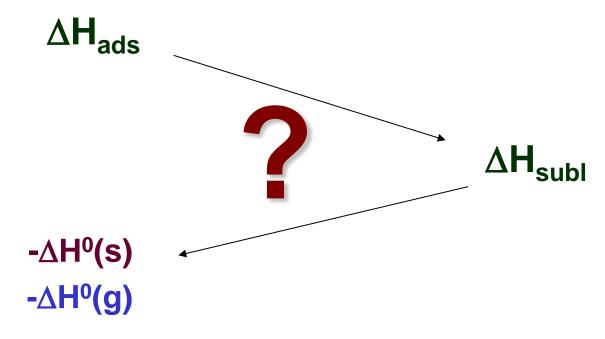
 Cs
 Ba<La* Hf</td>
 Ta
 W
 Re
 Os
 Ir
 Pt
 Au
 Hg
 Ti
 Pb
 Bi
 Po
 At
 Rn

 Fr
 Ra
 Ac** Rf
 Db
 Sg
 Bh
 Hs
 Mt
 Ds
 Rg
 Cn
 Nh
 Fi
 Mc
 Lv
 Ts
 Og

* Ce Pr NdPmSm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Th Pa U Np Pu AmCm Bk Cf Es Fm MdNo Lr

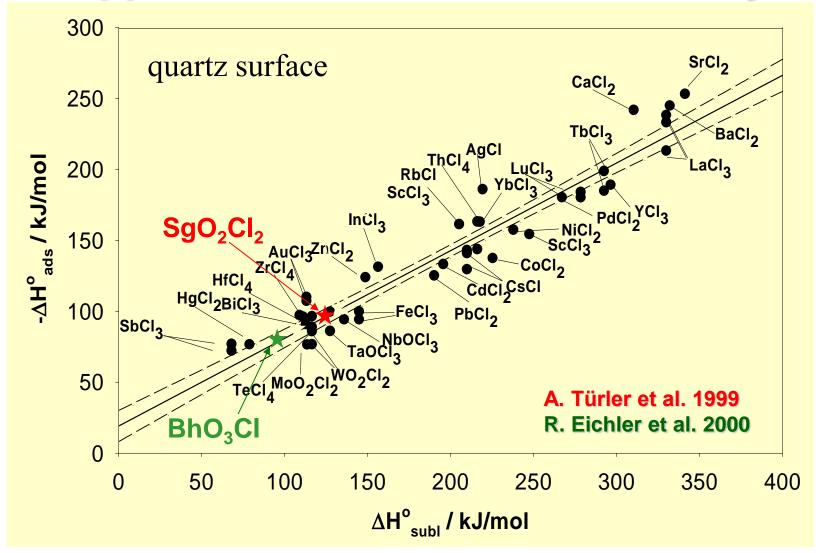
Working Hypothesis

Single atoms require simple stable molecules suitable for gas phase investigations

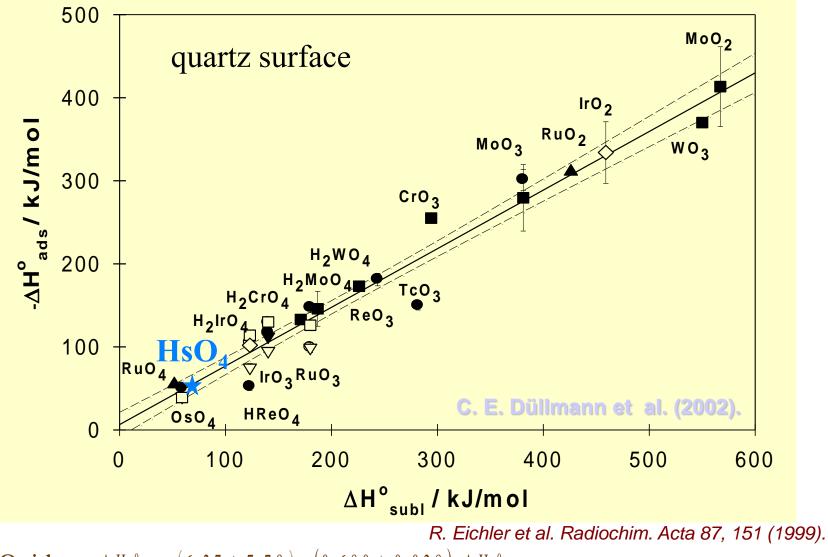

Element	Compound	Method/surfac	e Bond Character
Rf	RfOX ₂ , RfX ₄	TC,IC / quartz	Chemisorption
Db	DbOX ₃ , DbX ₅	TC,IC / quartz	Chemisorption
Sg	SgO ₂ X ₂	TC,IC / quartz	Chemisorption
Bh	BhO ₃ X, BhO ₃ OH	IC / quartz	Chemisorption
Hs	HsO ₄	TC / quartz	Chemisorption/Physisorption

X = halogen

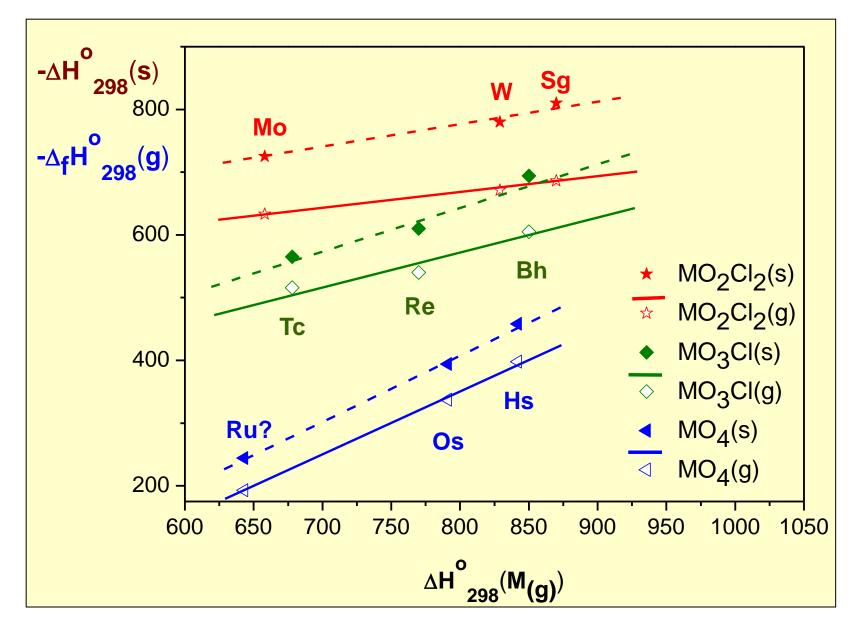
Model experiments \rightarrow **single atoms of lighter homologues**


"Microscopic-Macroscopic" Approach of Gas Phase Chemistry

Adsorption of single atoms / molecules


Stability of macroscopic phases

"Microscopic-Macroscopic" Approach of Gas Phase Chemistry


Eichler, B. et al.: J. Phys. Chem. A 103(46), 9296 (1999). Halogenidy: $-\Delta H_{ads}^{\circ} = (21.5 \pm 5.2) + (0.600 \pm 0.025) \cdot \Delta H_{subl}^{\circ}$

"Microscopic-Macroscopic" Approach of Gas Phase Chemistry

Oxidy: $-\Delta H_{ads}^{o} = (6.27 \pm 7.78) + (0.680 \pm 0.028) \cdot \Delta H_{subl}^{o}$

Results

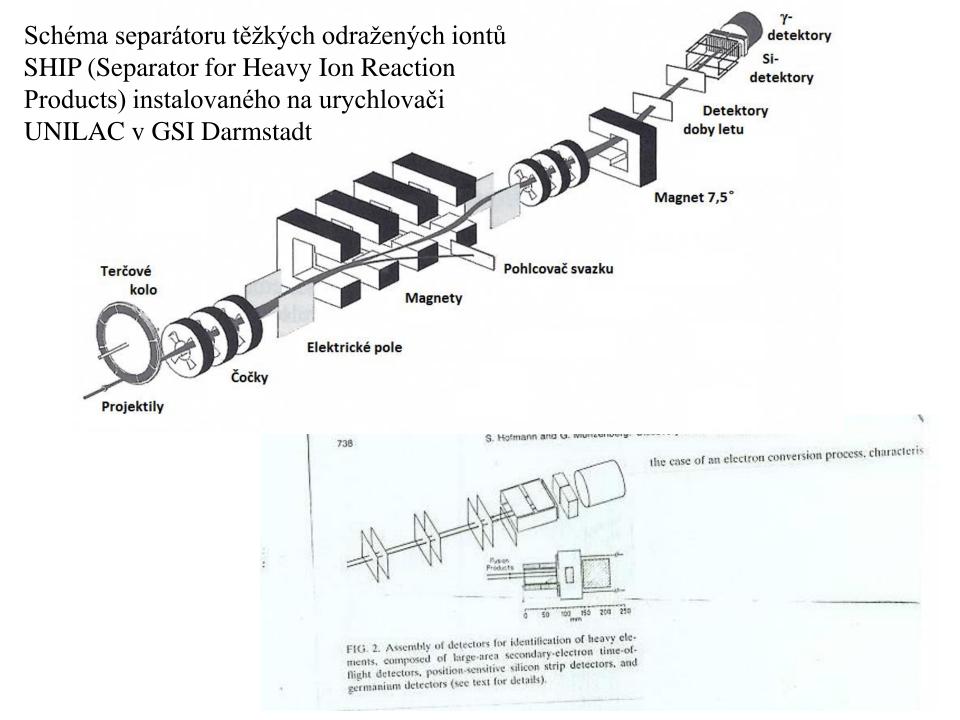
107 – Bohrium (Bh)

Forecast: Eka-rhenium 1976: Dubna (Russia), Oganesyan et al. ${}^{209}\text{Bi}({}^{54}\text{Cr},2n){}^{261}\text{107} \ _{}^{20\ \%\ SF,\ 2\ m\ s;\ 80\ \%\ \alpha} \rightarrow \ {}^{257}\text{Db} \ _{}^{SF,\ 5\ s} \rightarrow$

1981: GSI Darmstadt (Germany), Münzenberg, Armbruster et al. ${}^{209}Bi({}^{54}Cr,n){}^{262}107 \xrightarrow{\alpha} 4.7 \text{ ms}} {}^{258}Db \xrightarrow{\alpha} 254Lr \xrightarrow{\alpha} 250}Fm$ Position-sensitive SSB detectors – implantation Proof: Whole decay chain in one pixel 6 atoms prepared

Today: A = 260-274 (some known only from the decay chains of higher TAn) ^{267}Bh T_{1/2} = 17 s α $^{249}Bk(^{22}Ne,4n)$

Chemistry


Theoretical forecast: similar to Re

Experimental: PSI, 2000: chemistry with 6 atoms of ²⁶⁷Bh, oxychlorides ⇒ behaves like a typical group 7 of the PTE element decreasing oxychloride volatility in group 7: TcO₃Cl > ReO₃Cl > BbO_Cl

107 – Bohrium (Bh)

Main isotopes of bohrium

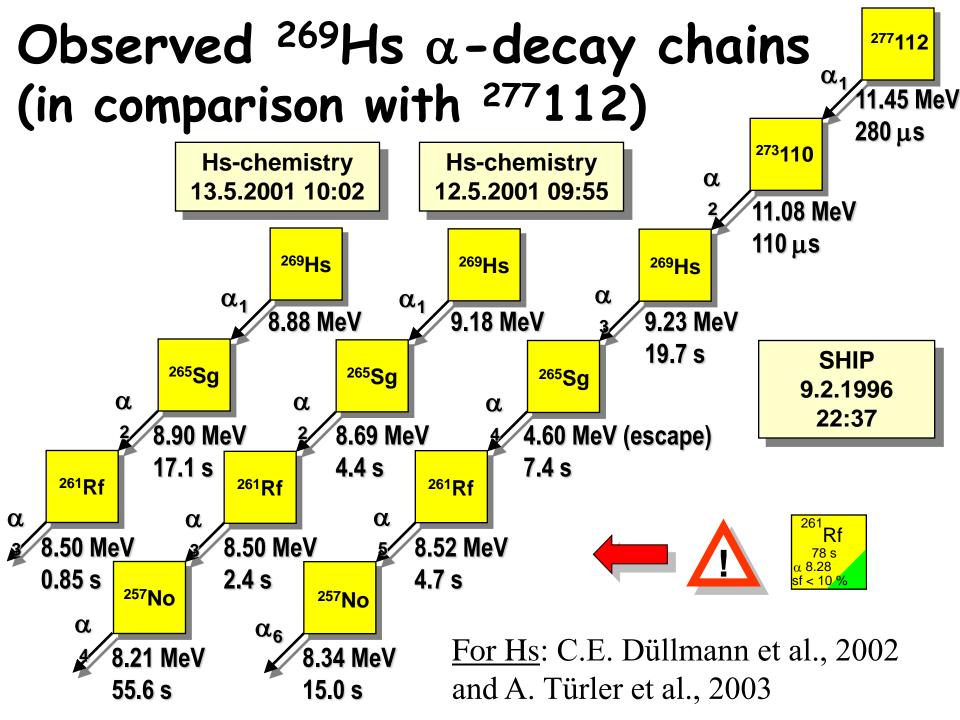
Isotope	Half-life	Decay mode	Product
²⁷⁸ Bh	690 s?	SF	
^{274}Bh	40 s	α	²⁷⁰ Db
²⁷² Bh	10 s	α	²⁶⁸ Db
²⁷¹ Bh	1 s	α	²⁶⁷ Db
²⁷⁰ Bh	60 s	α	²⁶⁶ Db
²⁶⁷ Bh	17 s	α	²⁶³ Db

108 – Hassium (Hs)

Official discovery

First synthesized in 1984 by a German research team led by **Peter Armbruster** and **Gottfried Münzenberg** at the Gesellschaft für Schwerionenforschung in Darmstadt.

²⁰⁸Pb (⁵⁸Fe,n) ²⁶⁵Hs $-\frac{\alpha, 1.8 \text{ ms}}{-4 \text{ ms}} \rightarrow \text{ decay chain}$


3 atoms detected in this experiment. IUPAC/IUPAP recognised the GSI as official discoverers in their 1992.

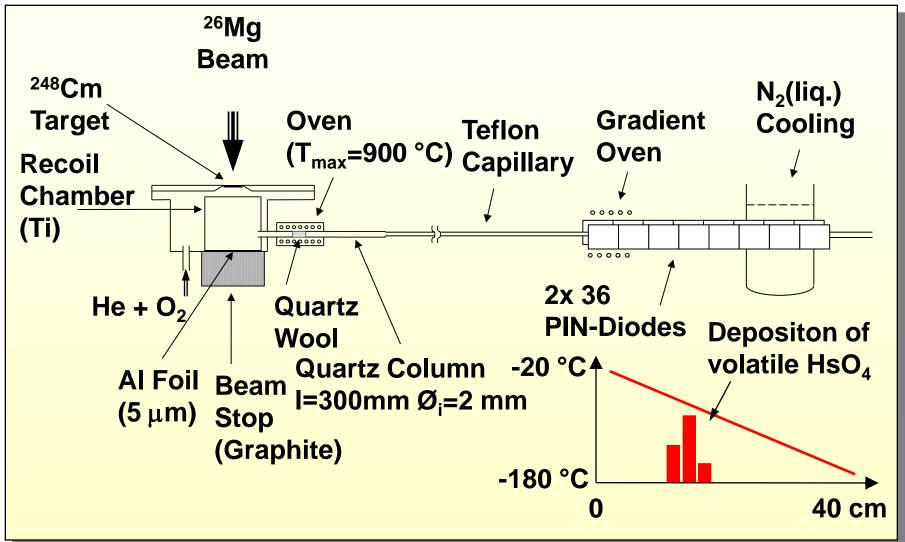
Naming

The name hassium derived from the Latin name for the German state of **Hessen** where the institute is located (Latin: hassia German: Hessen). Adopted internationally in 1997.

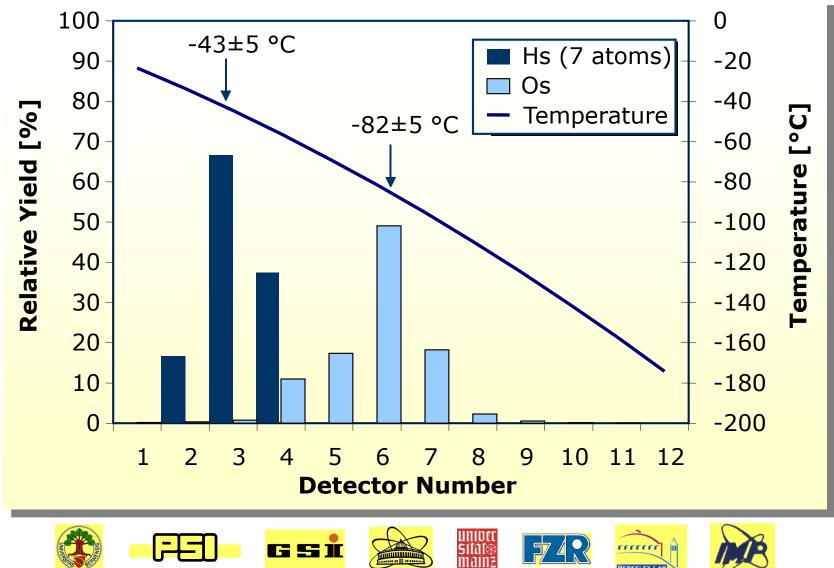
Chemistry

Expected to behave as *eka-osmium*. Forecasted to form very volatile HsO_4 gaseous at a single-molecule level at ambient pressure and temperature (like OsO_4 . Verified in gas chromatography experiments.

108 – Hassium (Hs)


Main isotopes of hassium

Isotope	Half-life	Decay mode	Product
²⁷⁷ Hs	30 s	SF	
²⁷¹ Hs	4 s	α	267 Sg
²⁷⁰ Hs	10 s	α	²⁶⁶ Sg
²⁶⁹ Hs	9.7 s	α	²⁶⁵ Sg


Experimental chemistry

- **HsO**₄: ²⁴⁸Cm(²⁶Mg,5n)²⁶⁹Hs, 5 atoms, oxidized: ²⁶⁹Hs + 2 O₂ → ²⁶⁹HsO₄, thermochromatography ⇒ Δ H_{ads}(HsO₄) = (-46 ± 2) kJ/mol ⇒ HsO₄ less volatile than OsO₄ (Δ H_{ads} = -39 kJ/mol)
- **Hassate**: Formed during deposition of HsO_4 on NaOH in the presence of water $HsO_4 + 2 \text{ NaOH} \rightarrow \text{Na}_2[HsO_4(OH)_2] - JGU \text{ Mainz}, 2004$
- Future: prepare and study **hassocene**, $Hs(C_5H_5)_2$ analogous to osmocene cyclopentadienyl rings in an eclipsed conformation, hassium in the low formal oxidation state of +2

<u>In-Situ Volatilization and</u> <u>On-line detection apparatus IVO</u>

Thermochromatography of OsO₄ and HsO₄

SHE – Chemistry summary

Methods:

- Thermochromatography OLGA at PSI
- HPLC ARCA at GSI
- Liquid-liquid extraction SISAK at Chalmers.

Results:

- Rf is a homologue of Zr and Hf (closer to Hf than Zr).
- Db behaves more like Nb than Ta. Similarity with pseudohomologue Pa.
- Sg resembles Mo, W and pseudohomologue U. Chemistry based on 2 atoms, difficults to draw final conclusions. The last element studied by aqueous chemistry.
- Bh studied only by thermochromatography –homologue of Tc and Re.
- Hs forms tetraoxide like Ru and Os. May also form hassate similar to rutenate or osmiate.
- Studies of Cn on the go.

109 – Meitnerium (Mt)

Official discovery

First synthesized on August 29, 1982 by a German team led by **Peter Armbruster** and **Gottfried Münzenberg** at the GSF Darmstadt.

²⁰⁹Bi (⁵⁸Fe,n) ²⁶⁶Mt $-\frac{\alpha, 3.5 \text{ ms}}{-3.5 \text{ ms}}$ decay chain

1 atom detected (!) in this experiment. Now: The most stable is ${}^{278}Mt$ (T_{1/2} = 7.6 s)

Naming

The name meitnerium (Mt) was suggested in honor of the Austrian physicist Lise Meitner. In 1997, the name adopted by IUPAC.

Chemistry

Expected to behave as *eka-iridium*. Sufficiently stable isotope is not known at this time which would allow to study chemical properties.

By analogy with the lighter members of group 9 meitnerium should:

- form a hexafluoride, MtF6, more stable than iridium(VI) fluoride
- show a dioxide, MtO2, if eka-iridium reactivity is shown
- form $MtCl_3$, $MtBr_3$ and MtI_3 in an analogous manner to iridium.

109 – Meitnerium (Mt)

Most stable isotopes					
iso	half-life	DM	DE (MeV)		
²⁷⁸ Mt	7.6 s	α	9.6		
²⁷⁶ Mt	0.72 s	α	9.71		
²⁷⁵ Mt	9.7 ms	α	10.33		
²⁷⁴ Mt	0.44 s	α	9.76		
^{270m} Mt ?	1.1 s	α			
^{270g} Mt	5 ms	α	10.03		
²⁶⁸ Mt	42 ms	α	10.26,10.10		
²⁶⁶ Mt	1.7 ms	α	11.00		

110 – Darmstadtium (Ds)

Official discovery

First synthesized on November 9, 1994 by a German team led by **P. Armbruster** and **G. Münzenberg** (+Šáro, Janík) at the GSF Darmstadt.

 $\begin{array}{l} {}^{208}Pb \ ({}^{62}Ni,n) \ {}^{269}Ds \ - {}^{\alpha, 170 \ \underline{+160}{-60} \ \mu s} \\ {}^{208}Pb \ ({}^{64}Ni,n) \ {}^{271}Ds \ - {}^{\alpha, 1.1 \ \underline{+0.6}{-0.3} \ \mu s} \\ \end{array} \qquad decay \ chain$

4 or 3 atoms of ²⁶⁹Ds or ²⁷¹Ds detected, respectively in these experiments. IUPAC/IUPAP recognised the GSI as official discoverers in 2001.

Naming

The team at GSI considered the names Darmstadtium (Ds) and Wixhausium (Wi). They decided on the former and named the element after the city near the place of its discovery, Darmstadt and not the suburb Wixhausen itself. The new name was officially recommended by IUPAC on August 16, 2003. Earlier alternate proposals: Hahnium (US), Becquerelium (Russia).

110 – Darmstadtium (Ds)

Chemistry

Expected to behave as *eka-platinum*. Sufficiently stable isotope is not known at this time which would allow to study chemical properties. By analogy with the lighter members of group 10 Ds is:

- expected to form a stable hexafluoride, DsF_6 , in addition to DsF_5 and DsF_4
- halogenation should result in the formation of tetrahalides, $DsCl_4$, $DsBr_4$, and DsI_4 .

It can be expected to have notable hardness and catalytic properties

Isotope	Half-life	Decay mode	Product
²⁸¹ Ds	14 s	94% SF	
DS	14 8	6% α	²⁷⁷ Hs
279	0.2	10% α	²⁷⁵ Hs
²⁷⁹ Ds	0.2 s	90% SF	

Main isotopes of darmstadtium

111 – Roentgenium (Rg)

Official discovery

First synthesized on December 8, 1994 by a German team led by **Sigurd Hofmann** at the GSF Darmstadt.

²⁰⁹Bi (⁶⁴Ni,n) ²⁷²Rg $-\frac{\alpha, 1.1 + 0.6}{0.3 + 0.5}$ decay chain

3 atoms of ²⁷²Rg detected in this experiment. IUPAC/IUPAP recognised the GSI as official discoverers in 2003 after preparation of 3 more atoms in 2002.

Naming

The name roentgenium (Rg) was proposed by the GSI team in honor of the German physicist Wilhelm Conrad Röntgen, and was accepted as a permanent name on November 1, 2004

111 – Roentgenium (Rg)

Chemistry

Expected to behave as *eka-gold*. The heavier members of this group are well known for their lack of reactivity or noble character – inert to oxygen but are attacked by the halogens. Roentgenium is expected to be

- even more noble than gold
- be expected to be inert to oxygen and halogens
- expected to form $Rg(CN)_2^-$ complex
- the most-likely reaction is with fluorine to form a trifluoride, RgF_3 .

No experimental chemistry, yet – low yield of Rg isotopes production.

Isotope	Half-life	Decay mode	Product
²⁸⁶ Rg	10.7 min?	α	²⁸² Mt
²⁸³ Rg	5.1 min?	SF	
282 Rg	2 min	α	²⁷⁸ Mt
²⁸¹ Rg	17	SF (90%)	
Kg	17 s	α (10%)	²⁷⁷ Mt
²⁸⁰ Rg	4 s	α	²⁷⁶ Mt
²⁷⁹ Rg	0.1 s	α	²⁷⁵ Mt

Main isotopes of roentgenium

112 – Copernicium (Cn)

Official discovery

First synthesized on February 9, 1996 by a German team led by **Sigurd Hofmann**, **Victor Ninov et al.** at the GSF Darmstadt.

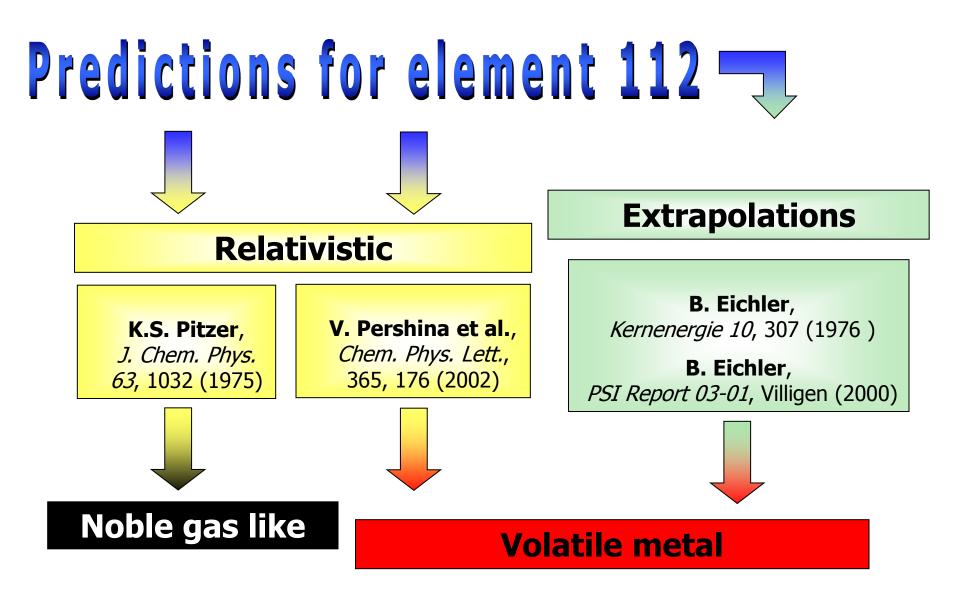
1 atom of ²⁷⁷Cn detected in this experiment, a second was reported but data was fabricated by Ninov, another atom synthesised only in in 2000. Confirmed in Japan (RIKEN) in 2004. IUPAC/IUPAP recognised the GSI as official discoverers in May 2009 after GSF confirmed data for ²⁶⁹Hs and ²⁶¹Rf.

Naming

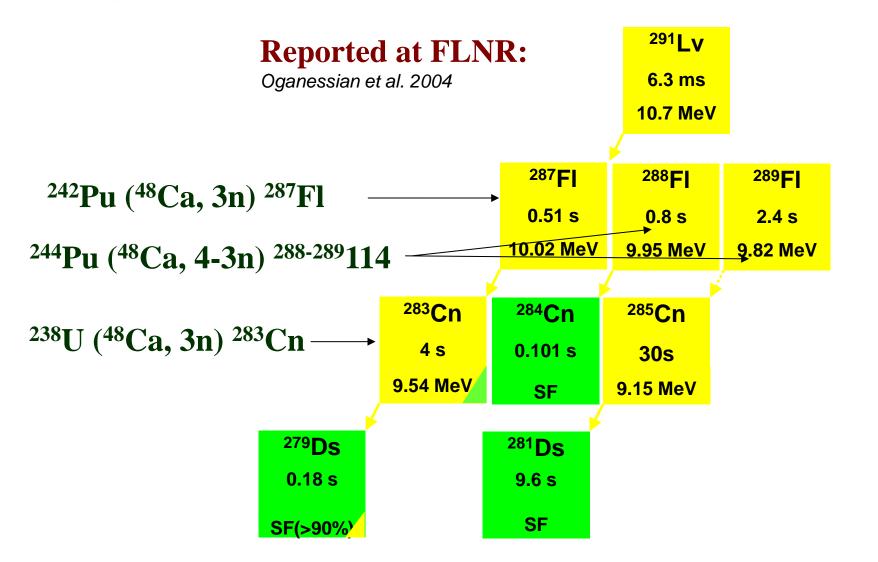
Copernicium proposed by the GSI team with the symbol Cp, after Nicolaus Copernicus. However, Cp previously associated with the cassiopeium, now known as lutetium (Lu). IUPAC prompted the GSI team to the symbol Cn. Name and symbol officially accepted by IUPAC on 19 February 2010, the 537th anniversary of Copernicus' birth.

112 – Copernicium (Cn)

Chemistry - predictions

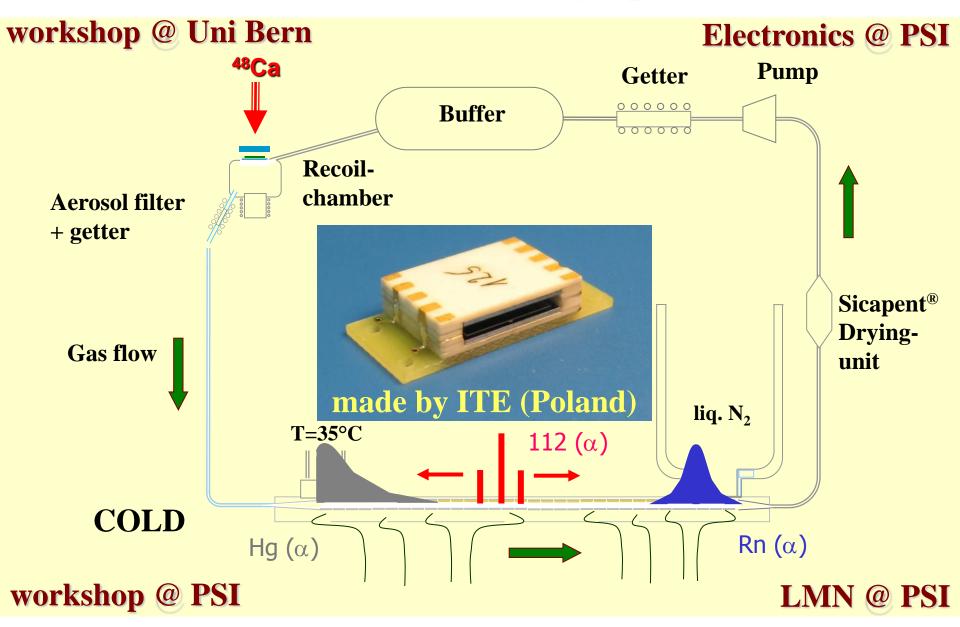

Last member of the 6d series of transition metals and the heaviest group 12 element, below zinc, cadmium and mercury (*eka-mercury*).

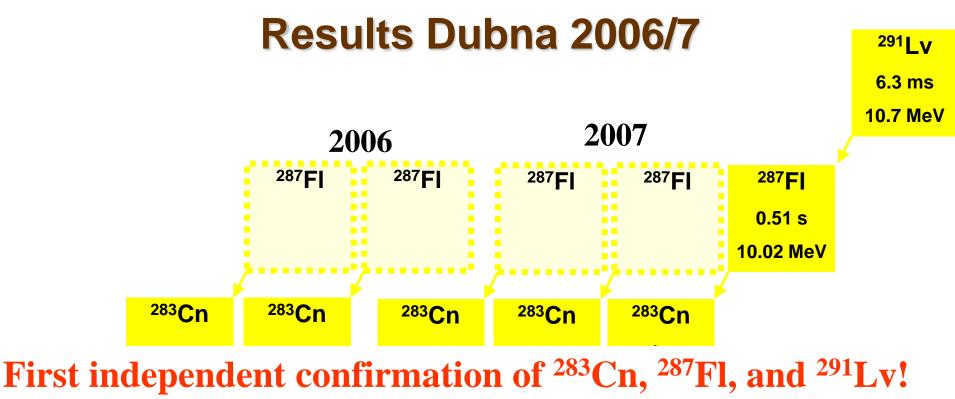
However, **predicted to differ significantly from lighter group 12 elements**. Due to the **largest relativistic effects** in the period 7, and among all 118 known elements


- in water solutions copernicium is likely to form +2 and +4 oxidation states, with the latter one being more stable
- may even behave as a rare gas gaseous at standard temperature and pressure!

Isotope	Half-life	Decay mode	Product
²⁸⁶ Cn	8.45 s ?	SF	—
²⁸⁵ Cn	30 s	α	²⁸¹ Ds
²⁸³ Cn	4 a	90% α	²⁷⁹ Ds
CII	4 s	10% SF	_

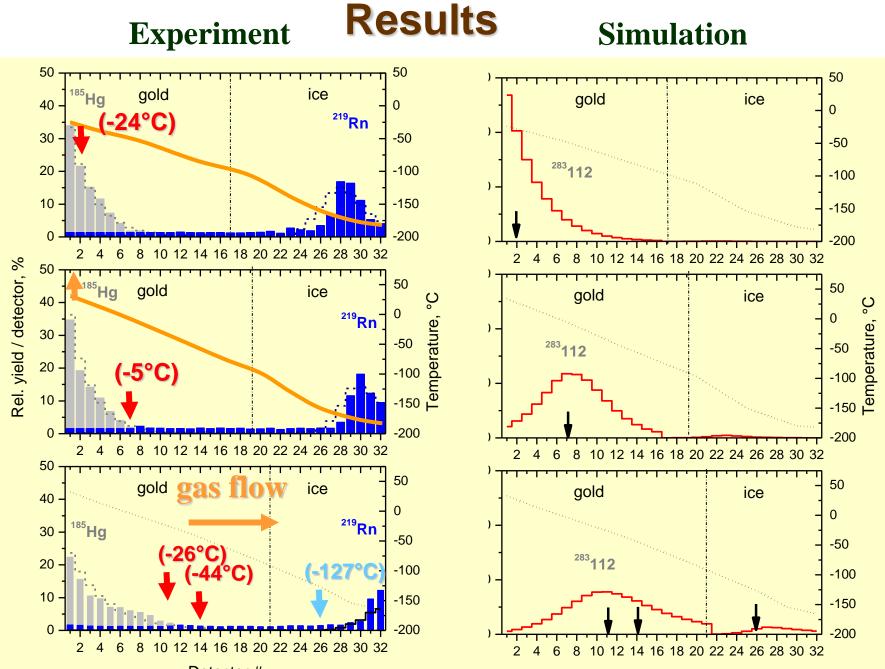
Main isotopes of copernicium




Copernicium and Flerovium Production

Oganessian, Yu. Ts. Phys. Rev. C (2004)

Experimental Setup @ FLNR

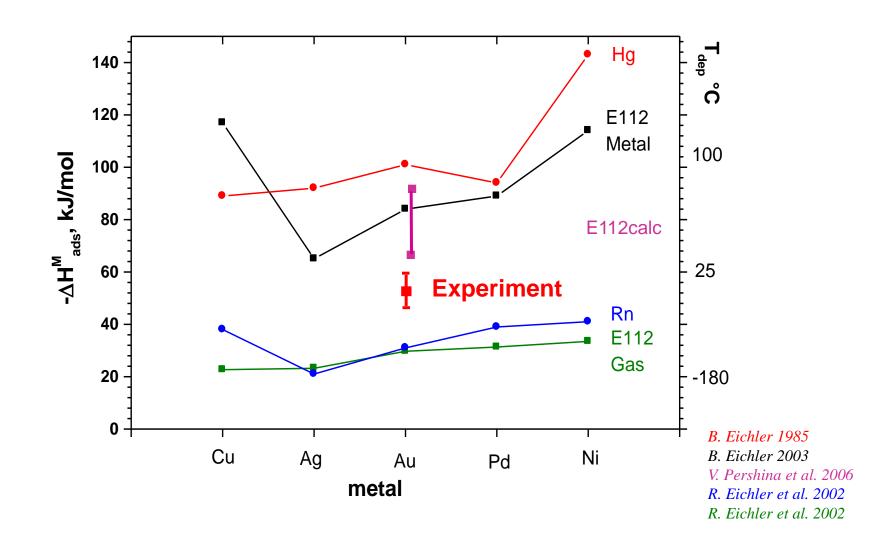


| ²⁷⁹ Ds |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| τ: 0.592 s | τ: 0.536 s | τ: 0.072 s | τ: 0.088 s | 0.18 s |
| SF | SF | SF | SF | SF(>90%) |
| 108+123 MeV | 127+105 MeV | 94+51 MeV | 112+x MeV | 205 MeV |

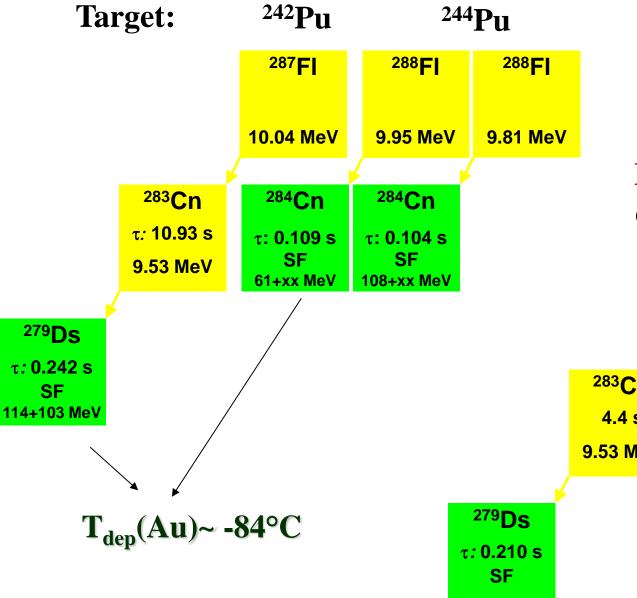
Reported at FLNR:

Oganessian et al. 2004

R. Eichler et al 2006

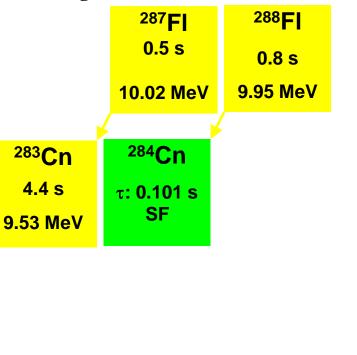


Detector #


Detector #

Results

Cn adsorption on Au



Results Dubna 2007

Reported at DGFRS:

Oganessian et al. 2004

Official discovery

First detected in August 2003 as a decay product of Moscovium (Mc) by joint Dubna and LLNL teams lead by **S. Dmitriev**.

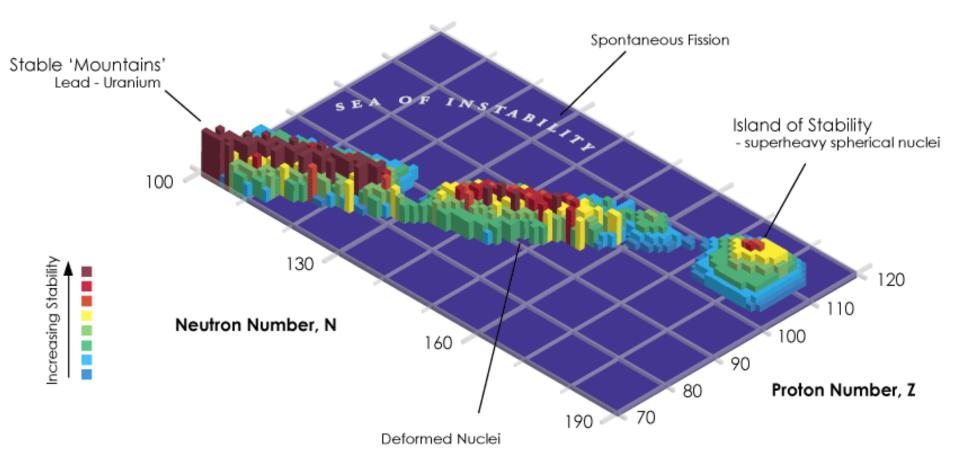
²⁴³Am (⁴⁸Ca,3-4n) ^{288,287}Mc \rightarrow ^{284,283}Nh $\xrightarrow{\alpha,}$ decay chain

First synthesized (1 atom) on July 23, 2004 by a Japanese team at RIKEN lead by **Morita**. Another atom synthesized in 2012 (450 days of irradiation) – identification by the decay chain.

²⁰⁹Bi (⁷⁰Zn,n) ²⁷⁸Nh $\xrightarrow{\alpha,}$ decay chain

Naming

The element with atomic number 113 is historically known as *eka-thallium*. The name Nihonium (Nh) name comes from the common Japanese name for Japan $(\Box \triangleq nihon)$.


	List of nihonium isotopes						
Isotope	sotope Half-life Decay mode Discovery year Reaction						
²⁷⁸ Nh	1. 4 ms	α	2004	²⁰⁹ Bi(⁷⁰ Zn,n)			
²⁸² Nh	70 ms	α	2006	²³⁷ Np(⁴⁸ Ca,3n)			
²⁸³ Nh	0.1 s	α	2003	²⁸⁷ Mc(—,α)			
²⁸⁴ Nh	1 s	α, EC	2003	²⁸⁸ Mc(—,α)			
²⁸⁵ Nh	4 s	α	2009	²⁹³ Ts(,2 α)			
²⁸⁶ Nh	8 s	α	2009	²⁹⁴ Ts(,2 α)			
²⁸⁷ Nh	5.5 s?	α	1999	287 Fl(e ⁻ ,v _e)?			

Chemistry - predictions

Projected to be the first member of the 7p series of elements, heaviest member of group 13 in the PT - *eka-thallium*.

In +I state should form monoxide, Nh₂O, and monohalides, NhF, NhCl, NhBr, NhI. The +III state should be less stable than +I state.

Should be the most electronegative in group 13: e.g. in NhTs, the negative charge is expected to be on Nh atom rather than the Ts,

3-dimensional rendering of the theoretical island of stability around N=178 and Z=112 $\,$

Chemistry - experimental

²⁸⁴Nh, ²⁸⁵Nh, and ²⁸⁶Nh stable enough for chemical investigation. Predicted ΔH_{subl} (Nh) ~ 150 kJ/mol and $\Delta H_{ads,Au}$ (Nh) ~ -159 kJ/mol

Preliminary chemical experiments:

Dubna: 243 Am(48 Ca,3n) 288 Mc $\rightarrow {}^{284}$ Nh \Rightarrow large retention of both elemental Nh and NhOH on Teflon capillaries.

<u>Conclusion:</u> use bromine saturated with boron tribromide as a carrier gas to oxidise Nh to Nh(III) and brominate it, then study oxidation states of nihonium.

114 – Flerovium (Fl)

Official discovery

The now-confirmed discovery of 114 was made in June 1999 when the Dubna team lead by **S. Dmitriev** repeated the reaction in a joint Dubna and LLNL experiment.

²⁴³Pu (⁴⁸Ca,3n) ²⁸⁹Fl $-\frac{\alpha, 2.6 \text{ s}}{-\frac{\alpha}{2}, 2.6 \text{ s}}$ decay chain

Two atoms of element 114 were produced decaying by emission of 9.82 MeV alpha particles with a half life of 2.6 s. Additional isotopes detected as decay products of 116 and 118. Confirmed at LLNL Berkeley and GSI (both in 2009).

Island of stability?

According to theory, Z=114 is the next spherical magic number. In this region, N=184 (or 196) should be the next spherical neutron magic number and hence ²⁹⁸Fl or ³¹⁰Fl are candidates for the next spherical doubly magic nucleus.

 298 Fl – centre of a hypothetical 'island of stability'. Some T_{1/2} predicted very long, e.g. 294 Ds – T_{1/2} ~ 10¹⁰ y (similar to Th) New theory – the next proton magic number not 114 but 122..

Naming

Named after Georgy Flerov - flerovium,

114 – Flerovium (Fl)

Chemistry - predictions

Fl should portray eka-lead chemical properties - form

- a monoxide, FlO, and dihalides, FlF_2 , $FlCl_2$, $FlBr_2$, and FlI_2 .
- if +IV state exists, it it should form oxide, FlO_2 , and fluoride, FlF_4
- a mixed oxide, Fl_3O_4 , analogous to Pb_3O_4 may also exist.

Some studies also suggest that the chemical behaviour of flerovium might in fact be closer to that of the noble gas radon, than to that of lead.

Isotope	Half-life	Decay mode	Product
²⁹⁰ Fl	19 s?	EC	²⁹⁰ Nh
ГІ	198!	α	²⁸⁶ Cn
289Fl	1.9 s	α	²⁸⁵ Cn
²⁸⁸ Fl	0.64 s	α	²⁸⁴ Cn
²⁸⁷ Fl	0.54 a	α	²⁸³ Cn
ГІ	0.54 s	EC?	²⁸⁷ Nh
²⁸⁶ Fl	0.17 s	40% α	²⁸² Cn
ГІ	0.178	60% SF	
²⁸⁵ Fl	0.15 s	α	²⁸¹ Cn
²⁸⁴ Fl	2 ms	SF	

Main isotopes of flerovium

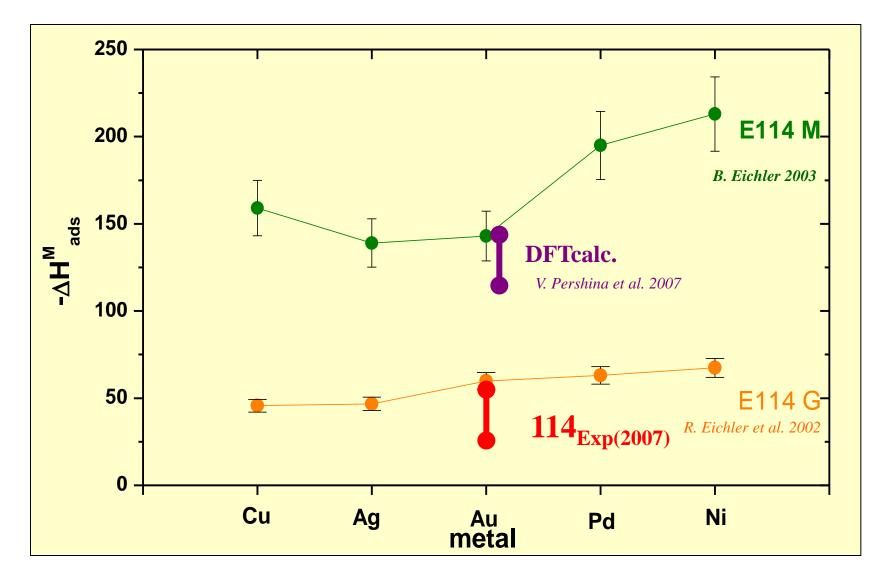
114 – Flerovium (Fl)

Chemistry - experimental

The heaviest element studied till today.

Performed by FLNR – PSI collaboration together with the Cn study.

Isotope production: ²⁴²Pu(⁴⁸Ca,3n)²⁸⁷Fl and ²⁴⁴Pu(⁴⁸Ca,4n)²⁸⁸Fl (both decay to Cn that has been studied primarily). 4 Fl atoms detected.


Sugestion: noble-gas-like interaction of flerovium with gold.

Further experiments - volatility of flerovium comparable to mercury, astatine, or copernicium.

Sugestion: new category of "**volatile metals**" – Kratz may be gaseous at standard temperature and pressure, fall between normal metals and noble gases in terms of adsorption properties

Conclusion: Flerovium is the least reactive element in the group, but still a metal. However, the question of whether flerovium is a metal or a noble gas is still open.

Results Dubna 2007

115 – Moscovium (Mc)

Official discovery

First synthesised in 2003 by joint LLNL-JINR team headed by Yuri Oganessian at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia.

²⁴³Am (⁴⁸Ca,3-4n) ^{288,287}Mc \rightarrow ^{284,283}Nh $\stackrel{\alpha}{\longrightarrow}$ decay chain

Then-observed life-times about 100 milliseconds.

Naming

Eka-bismuth. Suggested names included *langevinium*, after Paul Langevin. Moscovium referrs to the Moscow Oblast where Dubna is located.

Isotope	Half-life	Decay mode	Product
²⁹⁰ Mc	0.8 s	α	²⁸⁶ Nh
²⁸⁹ Mc	0.3 s	α	²⁸⁵ Nh
²⁸⁸ Mc	0.2 s	α	²⁸⁴ Nh
²⁸⁷ Mc	40 ms	α	²⁸³ Nh

Main isotopes of moscovium

115 – Moscovium (Mc)

Chemistry - predictions

Member of group 15, the pnictogens, below nitrogen, phosphorus, arsenic, antimony, and bismuth -eka-bismuth.

Relativistic stabilization of the 7s and $7p_{1/2}$ orbitals (inert pair effect) should result in some unique properties of moscovium(I) – behaving more like thallium(I) than bismuth(I).

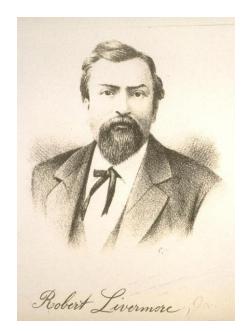
If flerovium displays closed-shell or noble gas-like properties, moscovium will likely be typically monovalent perhaps giving moscovium some alkali metal character.

However, the Mc³⁺ cation would behave like its true lighter homolog Bi³⁺. The +5 state should be impossible due to the stabilization of 7s electrons – moscovium may be considered to have only three valence electrons. Moscovium would be quite a reactive metal,

Chemistry - experimental

Not performed, yet, however the half-lives of ²⁸⁸Mc, ²⁸⁹Mc, and ²⁹⁰Mc are long enough for chemical investigations with current methods.

116 – Livermorium (Lv)


The heaviest member of group 16 although its position as the heavier homologue to polonium has not been confirmed, yet, by chemical studies. First detected in 2000

²⁴⁸Cm (⁴⁸Ca,3n) ²⁹³Lv $\xrightarrow{\alpha, 60 \text{ ms}}$ ²⁸⁹Fl $\xrightarrow{\alpha}$ decay chain

since then about 30 atoms of Lv have been produced, either directly or as a decay product of Og.

Naming

Historically known as eka-polonium. The name livermorium and the symbol Lv adopted on May 31, 2012. The name recognises the Lawrence Livermore National Laboratory, within the city of Livermore, CA (USA), which collaborated with JINR on the discovery. The city in turn is named after the American rancher Robert Livermore, a naturalized Mexican citizen of English birth.

116 – Livermorium (Lv)

Known isotopes

Isotope	Half-life	Decay mode	Energy (MeV)	Daughter
²⁹³ Lv	60 ms	α	9.95	²⁸⁶ Nh
²⁹² Lv	12 ms	α	10.31	²⁸⁵ Nh
²⁹¹ Lv	18 ms	α	10.46	²⁸⁴ Nh
²⁹⁰ Lv	8 ms	α	10.59	²⁸³ Nh

Chemistry - predictions

Member of group 16 – chalcogens – valence configuration predicted as 7s²7p⁴. Continue the trends – melting point higher but boiling point lower than Po. Denser metal than Po – around 12.9 g/cm³.

The mass of the electron of Lv⁺ expected to be 1.86 times that of a stationary electron, due to relativistic effects.

Most stable oxidation state +2, +4 unstable (only in e.g. LvF_4), +6 should not exist, -2 very unstable – chemistry cationic only.

Livermorane (LvH_2) – heaviest homologue of water. Hydride-like but still covalent.

Chemistry - experimental

No experiments, yet, no isotopes stable enough for current methods. For the results with lighter homologues see moscovium.

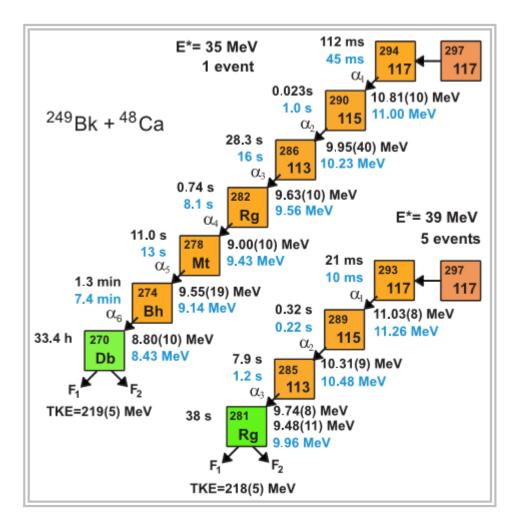
117 – Tennessine (Ts)

The heaviest member of halogen family – *eka-astatine* – although its position as the heavier homologue to polonium has not been confirmed, yet. May be located in the island of stability. Six atoms detected by a joint JINR–ORNL–Vanderbilt –LLNL collaboration at Dubna, Moscow Oblast, Russia, in 2009–10.

 $^{249}Bk (^{48}Ca, 3-4n) \xrightarrow{293,294}Ts \xrightarrow{\alpha,} decay chain$

Half-lives of ²⁹³Ts or ²⁹⁴Ts equal to 20 ms or 50 ms, respectively.

Naming


Historically known as *eka-astatine*. The name *tennessine*, with a symbol of *Ts*, after "the region of Tennessee", accepted by the IUPAC in November 2016. –*ine* to mimic lighter halogens.

Chemistry

Expected to behave similarly to the halogens in many respects, however, going down group 17, the metallicity increases; hence, an extrapolation based on periodic trends would predict tennessine to be a rather volatile post-transition metal. Aside from the unstable -1 state, three more oxidation states are predicted; +5, +3, and +1 (especially stable).

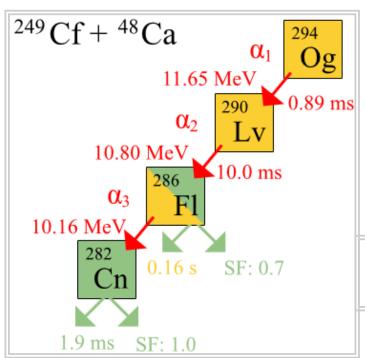
No experimental chemistry possible today.

117 – Tenessine (Ts)

Decay chain of the isotopes of tennessine produced in the original experiment. The figures near the arrows describe experimental (**black**) and theoretical (**blue**) values for the half-life and energy of each decay.

 $@\ https://commons.wikimedia.org/wiki/File:DecayChain_Ununseptium.svg \#/media/File:DecayChain_Ununseptium.svg \#/media/File:D$

118 – Oganesson (Og)


Official discovery

Claimed (together with livermorium) for the first time by LBNL (Lawrence Berkeley National Laboratory) in 1999 in reaction ²⁰⁸Pb (⁸⁶Kr, n) ²⁹³Og

Retracted next year – data found fabricated....

Officially discovered by a collaboration of JINR Dubna and LLNL led by Yuri Oganessian. Experiments performed in 2002 - 2006, three atoms of ²⁹⁴Og seen

²⁴⁹Cf (⁴⁸Ca, 3n) ²⁹⁴Og $\xrightarrow{\alpha, 0.89 \text{ ms}}$ decay chain

Supporting experiments on synthesis and study of the before unknown ²⁹⁰Lv daughter followed till the recognition in 2015 and naming in 2016.

Radioactive decay chain of ²⁹⁴Og. (The fraction of spontaneous fission in green.)

118 – Oganesson (Og)

Naming

Historically known as eka-radon. Named Oganesson (Og) in 2016 after Yuri Oganessian.

Chemistry - predictions

Member of group 18 – noble gases – valence configuration predicted as $7s^27p^6$. Expected to be (slightly) more reactive than radon. Expected boiling point 320–380 K – not a gas under standard conditions... +2 and +4 predicted to exist in OgF₂ and OgF₄, +6 less stable.

Chemistry - experimental

No experiments, yet, no isotopes stable enough for the current methods.

Isotope	Half-life	Decay mode	Energy (MeV)	Daughter
²⁹⁴ Og	0.7 ms	α	11.65	²⁹⁰ Lv

Known isotopes

Z = 119 - 120

Synthesis

- 1. ⁿEs (⁴⁸Ca,xn) ^(n-x)119Problem: Availability and half-livesⁿFm (⁴⁸Ca,xn) ^(n-x)120of target nuclides
- 2. New heavier projectiles on actinide targets
 - 22^{Ti: 249}Bk (⁵⁰Ti,xn) ^{299-x}119, ²⁴⁹Cf (⁵⁰Ti,xn) ^{299-x}120 JINR Dubna
 - 23V: ²⁴⁸Cm (⁵⁰V,xn) ^{298-x}119 RIKEN
- **3. Cold fusion revisited Problem: Extremely low cross sections**

Chemistry – predictions

Members of groups 1 and 2:

- 119 alkali metal....
- 120 alkaline earth metal....

Periodic table of the elements

1	¹ H	2	0	utl	ool	k /	E	kte	nd	ed	ΡΤ	Έ	13	14	15	16	17	² He
2	³ Li	⁴ Be											₅ B	⁶ C	7 N	8 O	9 F	¹⁰ Ne
3	11 Na	¹² Mg	3	4	5	6	7	8	9	10	11	12	13 Al	¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar
4	19 K	²⁰ Ca	21 Sc	²² Ti	23 V	²⁴ Cr	25 Mn	²⁶ Fe	27 Co	²⁸ Ni	Cu	³⁰ Zn	³¹ Ga	Ge	³³ As	³⁴ Se	35 Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	⁴³ Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	A7 Ag	48 Cd	49 In	⁵⁰ Sn	Sb	⁵² Te	53 	Xe
6	⁵⁵ Cs	56 Ba	⁵⁷⁻⁷¹ La	⁷² Hf	⁷³ Ta	74 W	⁷⁵ Re	⁷⁶ Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	80 Hg	81 TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	85 At	⁸⁶ Rn
7	⁸⁷ Fr	⁸⁸ Ra	⁸⁹⁻¹⁰³ Ac	¹⁰⁴ Rf	¹⁰⁵ Db	¹⁰⁶ Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	¹⁰⁹ Mt	¹¹⁰ Ds	Rg	¹¹² Cn	¹¹³ 113	114 FI	¹¹⁵ 115	116 Lv	¹¹⁷ 117	¹¹⁸ 118
8	¹¹⁹ 119	¹²⁰ 120	¹²¹ 121	¹⁵⁴ 154	¹⁵⁵ 155	¹⁵⁶ 156	¹⁵⁷ 157	¹⁵⁸ 158	¹⁵⁹ 159	¹⁶⁰ 160	¹⁶¹ 161	¹⁶² 162	¹⁶³ 163	¹⁶⁴ 164	¹⁶⁵ 165	¹⁶⁶ 166	¹⁶⁷ 167	¹⁶⁸ 168
Lanthanides			⁵⁷ La	⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	62 Sm	Eu	64 Gd	⁶⁵ Tb	66 Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu	
Actinides			⁸⁹ Ac	90 Th	91 Pa	92 U	93 Np	⁹⁴ Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	102 No	103 Lr	
SuperActinides 121 153 (32 g/f-elements - 18x 5g + 14x 6f)																		
TransActinides Rf - 121 TransSuperActinides 154 - 168 168																		