Jaderná chemie 2

J. John

Excitační funkce – nabité částice

Hodnoty σ pro reakci (n, γ) $\sigma = \pi \left(r + \frac{h}{2\pi\sqrt{2mE}} \right)^2 \qquad E = 0.025 \text{ eV} \rightarrow \sigma = 10^7 \text{ b}$ $1 \text{ b} = 10^{-24} \text{ cm}^2 = 10^{-28} \text{ m}^2$

<u>Gd</u> $\sigma_{abs} = 4,9 \cdot 10^{-20} \text{ cm}^2 (\underline{49\,000 \text{ b}})$ $\sigma_{akt} = 10^{-22} \,\mathrm{cm}^2$ (100 b) 152 Gd (0,20 %) $\sigma_{abs} = 2,3 \cdot 10^{-23} \text{ cm}^2$ (23 b) ¹⁵⁴Gd (2,15 %) $\sigma_{abs} = 6.1 \cdot 10^{-20} \text{ cm}^2 \quad (\underline{61\ 000\ b})$ ¹⁵⁵Gd (14,73 %) ¹⁵⁶Gd (20,47 %) $\sigma_{abs} = 8,67 \cdot 10^{-24} \text{ cm}^2 (8,67 \text{ b})$ $\sigma_{abs} = 2,54 \cdot 10^{-19} \text{ cm}^2 (254\,000 \text{ b})$ ¹⁵⁷Gd (15,68 %) ¹⁵⁸Gd (24,87 %) $\sigma_{akt} = 3.5 \cdot 10^{-24} \text{ cm}^2$ (3.5 b) ¹⁶⁰Gd (21,90 %) $\sigma_{akt} = 7,58 \cdot 10^{-25} \text{ cm}^2 \quad (0,758 \text{ b})$

Hodnoty σ pro reakci (n,γ)					
$\underline{\mathrm{Sm}} \sigma_{\mathrm{abs}} = 5,82 \cdot 10^{-21} \mathrm{c}$	2 (5 820 b)				
¹⁴⁴ Sm (3,09 %)	$\sigma_{akt} = 5,82 \cdot 10^{-21} \text{ cm}^2$	(5 820 b)			
¹⁴⁹ Sm (13,83 %)	$\sigma_{abs} = 4, 1 \cdot 10^{-20} \text{ cm}^2$	(<u>41 000 b</u>)			
¹⁵⁰ Sm (7,44 %)	$\sigma_{akt} = 1,02 \cdot 10^{-22} \text{ cm}^2$	(102 b)			
¹⁵² Sm (26,72 %)	$\sigma_{akt} = 2, 1 \cdot 10^{-22} \text{ cm}^2$	(210 b)			
¹⁵⁴ Sm (22,71 %)	$\sigma_{akt} = 5,5 \cdot 10^{-24} \text{ cm}^2$	(5,5 b)			

Hodnoty σ pro reakci (n, γ) <u>Cd</u> $\sigma_{at} = 5,45 \cdot 10^{-21} \text{ cm}^2 (5\,450 \text{ b})$ 106 Cd (1,215 %) $\sigma_{akt} = 10^{-24} \text{ cm}^2$ $\sigma_{akt} = 2 \cdot 10^{-24} \, cm^2$ 108 Cd (0,875 %) $\sigma_{akt} = 1, 1 \cdot 10^{-23} \text{ cm}^2$ 110 Cd (12,39 %) $\sigma_{abs} = 10^{-25} \text{ cm}^2$ $\sigma_{abs} = 2,4 \cdot 10^{-23} \text{ cm}^2$ ¹¹¹Cd (12,75 %) $\sigma_{akt} = 3 \cdot 10^{-26} \text{ cm}^2$ $\sigma_{abs} = 2,2 \cdot 10^{-24} \text{ cm}^2$ ¹¹²Cd (24,07 %) $\sigma_{abs} = 2 \cdot 10^{-20} \text{ cm}^2$ ¹¹³Cd (12,26 %) 20 000 b ¹¹⁴Cd (28,86 %) $(^{115}Cd; T = 49 d)$ $\sigma_{akt} = 1,4 \cdot 10^{-25} \text{ cm}^2$ $3 \cdot 10^{-25} \text{ cm}^2$ $(^{115}Cd; T = 53,5 h)$ $\sigma_{akt} = 2,7 \cdot 10^{-26} \text{ cm}^2$ ¹¹⁶Cd (7,58 %) $(^{117}Cd; T = 3,1 h)$ $5 \cdot 10^{-26} \text{ cm}^2$ $(^{117}Cd; T = 2,5 h)$

Hodnoty σ pro reakci (n, γ)

$$\begin{split} \underline{In} \ \sigma_{at} &= 1,94 \cdot 10^{-22} \ cm^2 \ (194 \ b) \\ ^{113} In \ (4,28 \ \%) & \sigma_{akt} &= 8,1 \cdot 10^{-24} \ cm^2 & (^{114} In, \ T = 50 \ d) \\ 3 \cdot 10^{-24} \ cm^2 & (^{114} In, \ T = 72 \ s) \\ ^{115} In \ (95,72 \ \%) & \sigma_{abs} &= 8,1 \cdot 10^{-23} \ cm^2 & (^{116} In, \ T = 2,2 \ s) \\ & 8,1 \cdot 10^{-23} \ cm^2 & (^{116} In, \ T = 54 \ m) \\ & 4,2 \cdot 10^{-23} \ cm^2 & (^{116} In, \ T = 14 \ s) \end{split}$$

 $\underline{Eu} \sigma_{akt} = 4,4 \cdot 10^{-21} \text{ cm}^2 (4\,400 \text{ b})$ ¹⁵¹Eu (47,82 %) $\sigma_{akt} = 3,8 \cdot 10^{-24} \text{ cm}^2 \text{ pro vznik } {}^{152}\text{Eu} (T = 96 \text{ m})$ $3,1 \cdot 10^{-21} \text{ cm}^2 \text{ pro vznik } {}^{152}\text{Eu} (T = 9,3 \text{ h})$ $5,7 \cdot 10^{-21} \text{ cm}^2 \text{ pro vznik } {}^{152}\text{Eu} (T = 12,4 \text{ h})$

¹⁵³Eu (52,18 %) $\sigma_{akt} = 3,9 \cdot 10^{-22} \text{ cm}^2$

Hodnoty σ pro reakci (n, γ) <u>Er</u> $\sigma_{abs} = 1,6 \cdot 10^{-22} \text{ cm}^2 (160 \text{ b})$ 162 Er (0,136 %) $\sigma_{akt} = 2, \cdot 10^{-24} \text{ cm}^2$ (2 b)¹⁶⁴Er (1,56 %) $\sigma_{akt} = 1,65 \cdot 10^{-24} \text{ cm}^2 (1,65 \text{ b})$ ¹⁶⁶Er (33,41 %) $\sigma_{akt} = 10^{-23} \text{ cm}^2$ (10 b) $\sigma_{abs} = 3.5 \cdot 10^{-23} \text{ cm}^2$ (35 b) $\sigma_{abs} = 6.5 \cdot 10^{-22} \text{ cm}^2$ 167 Er (22,94 %) (650 b) $\sigma_{akt} = 2,03 \cdot 10^{-24} \text{ cm}^2 (2,03 \text{ b})$ 168 Er (27,07 %) $\sigma_{akt} = 9 \cdot 10^{-24} \text{ cm}^2$ 170 Er (14,88 %) (9b)

Hodnoty σ pro reakci (n, γ) pro těžké prvky

²³³ U (T = 1,6·10 ⁵ r)	4,86·10 ⁻²³ cm ²	(48,6 b)
²³⁴ U (T = 2,5 · 10 ⁵ r)	9,5 \cdot 10 ⁻²³ cm ²	(95 b)
²³⁵ U (T = 7,1·10 ⁸ r)	$1,07 \cdot 10^{-22} \text{ cm}^2$	(107 b)
²³⁸ U (T = 4,5 · 10 ⁹ r)	$2,73 \cdot 10^{-24} \text{ cm}^2$	(2,73 b)
²³⁷ Np (T = 2,14 · 10 ⁶ r)	$1,7 \cdot 10^{-22} \text{ cm}^2$	(170 b)
239 Np (T = 2,53 d)	3,5·10 ⁻²³ cm ² 2,5·10 ⁻²³ cm ²	(35 b) (25 b)
²³⁹ Pu (T = 2,44 · 10 ⁴ r)	$2,65 \cdot 10^{-22} \text{ cm}^2$	(265 b)
²⁴⁰ Pu (T = 6,6·10 ³ r)	$2,81 \cdot 10^{-22} \text{ cm}^2$	(281 b)
241 Pu (T = 14 r)	3,81·10 ⁻²² cm ²	(381 b)

Hodnoty σ pro re	akci (n,γ) pr	o těžké prvky
241 Am (T = 433 r)	$6,2 \cdot 10^{-22} \text{ cm}^2$	(620 b)
242 Am (T = 152 r)	$5,5 \cdot 10^{-21} \text{ cm}^2$	(5 500 b)
²⁴³ Am (T = 7,95 · 10 ³ r)	$6,5 \cdot 10^{-23} \text{ cm}^2$	(65 b)
243 Cm (T = 9,32·10 ³ r)	$2 \cdot 10^{-22} \text{ cm}^2$	(200 b)
244 Cm (T = 18 r)	$2,5 \cdot 10^{-23} \text{ cm}^2$	(25 b)
²⁴⁵ Cm (T = 9,32·10 ³ r)	$2,0.10^{-22} \text{ cm}^2$	(200 b)
249 Bk (T = 314 d)	$1,1\cdot 10^{-21} \text{ cm}^2$	(1 100 b)

Excitační funkce - neutrony

Simultanní reakce

Simultanní reakce

 ${}^{54}_{26}Fe(\alpha,p)^{57}_{27}Co$ (270 d) ${}^{54}_{26}Fe(\alpha,n)^{57}_{28}Ni$ (36 h) ${}^{54}_{26}Fe(\alpha,pn)^{56}_{27}Co$ (77 h) ${}^{54}_{26}Fe(\alpha,2pn)^{55}_{26}Fe$ (2,6 r) ${}^{54}_{26}Fe(\alpha,2n)^{55}_{27}Co$ (18 h)

Simultanní reakce

Vysokoenergetické částice

1939 Hahn + Strassman

 238 U(n, α) 235 Th $\xrightarrow{\alpha}$ 231 Ra ($\xrightarrow{\beta}$ 231 Ac $\xrightarrow{\beta}$ 231 Th)

$$\mathbf{x} \qquad {}^{235}_{92}\mathrm{U}(\mathbf{n},\gamma){}^{236}_{92}\mathrm{U} \to {}^{A_1}_{Z_1}\mathrm{Y}_1 + {}^{A_2}_{Z_2}\mathrm{Y}_2 + \nu \mathbf{n} + \mathrm{Q}$$

Štěpení

Typy štěpných reakcí:

- 1) Tepelnými neutrony
- 2) Rychlými neutrony
- 3) Nabitými částicemi stř. energii
- 4) Nabitými částicemi vysokých energií
- 5) Fotoštěpení
- 6) Spontánní štěpení
- 7) Multipartice jádra

²³⁵U, ²³³U, ²³⁹Pu, ... TRU ²³⁸U (En > 1 MeV), ²³²Th, ... α , p, d, ¹²C, ¹⁴N, E > 10 MeV n·100 - n·1000 MeV (lehká jádra)

tri-, quadri-partice

Kapkový model – Weizsäckerova formule:

$$m(Z,A) = Z \cdot m_p + (A-Z)m_n + a_V \cdot A + a_p A^{2/3} + a_N \cdot \frac{(A-2Z)^2}{A} + a_c \cdot Z^2 \cdot A^{-1/3} + a_K \cdot A^{-3/4}$$

$$E_V(MeV) = 14, 0 \cdot A - 13, 0 \cdot A^{2/3} - 0,584 \frac{Z^2}{A^{1/3}} - 19,3 \frac{(A-2Z)^2}{A} + \frac{33,5}{A^{3/4}} \cdot \delta$$

 $\gamma \dots$ povrchové napětí

Elementární teorie štěpení Štěpení pro ΔE ≥ 0 ⇒ $4\pi r^2 \gamma (1-2^{1/3}) \le \frac{3}{5} \frac{Z^2 e^2}{r} (2^{-2/3}-1)$ $3 Z^2 e^2$ $\frac{E_C}{E_{povrch}} = \frac{\frac{5}{5} \frac{2}{r}}{4\pi r^2 \gamma} \ge \frac{1 - 2^{1/3}}{2^{-2/3} - 1} = 0,7$ parametr $\frac{E_C}{E_{povrch}} = \frac{\frac{3}{5} \frac{Z^2 e^2}{r_0 A^{1/3}}}{4\pi r_0^2 A^{2/3} \gamma} = \frac{3}{20} \frac{e^2}{\pi r_0^3 \gamma} \cdot \begin{pmatrix} Z^2 \\ A \end{pmatrix}$ štěpení $\left(\frac{Z^2}{A}\right) \approx 45 \implies Z_{\text{max}} \approx 110 - 125 \quad !!!$ $\frac{Z^2}{A} < 45 - E_a$ - aktivační energie

Parametr deformace α

 α_0 – kritická deformace

Aktivační energie

$$E_a = A^{2/3} \left| 10,2 \left(1 - 0,022 \frac{Z^2}{A} \right)^3 - 4,6 \left(1 - 0,0022 \frac{Z^2}{A} \right)^4 \right|$$

Ζ	Nuklid
74	183W
82	²⁰⁷ Pb
88	226 Ra
90	²³² Th
91	²³¹ Pa
92	²³⁸ U
92	235U

233U

²³⁹Pu

92

94

E_a [MeV] E_{vaz} [MeV] 14,6 10,6 8,8 7,6 6,2 6,4 6,1

5,7

4,9

~ 5,4 n_r

~ 5,4 n_r

~ 6,4 n_t

0,72 % ²³⁵U v U $\sigma_c = 98,38$ b (²³⁶U - α , SF, T_{1/2} = 2,34 · 10⁷r) $\sigma_f = 583,54$ b

Okamžité neutronyPočet ${}_{0}^{1}n$ 012345Pravděpodobnost0,030,160,340,300,130,04Počet ${}_{0}^{1}n = 2,47 \pm 0,03$

Sekundární procesy: Izobarické řady až 7 kroků ke stabilitě

Zpožděné neutrony

$${}^{A}_{Z}X \xrightarrow{\beta} {}^{A}_{Z+1}Y \xrightarrow{n} {}^{A-1}_{Z+1}Y$$

 $\underline{P\check{r}.:} \qquad U(n,f)_{34}^{87}Se \to {}^{87}_{35}Br \to {}^{87}_{36}Kr \to {}^{86}_{36}Kr + {}^{1}_{0}n \\ U(n,f)_{53}^{137}I \to {}^{137}_{54}Xe \to {}^{136}_{54}Xe + {}^{1}_{0}n \end{cases}$

0,0158 ¹n / štěpení

0

$T_{1/2}$	0,2 s 0,5 s	2 s	6 s	22 s	55 s
nuklid	celá řada	⁹⁰ Br	⁸⁹ Br	137I	⁸⁷ Br
		⁸⁵ As	138 I	⁸⁸ Br	
		⁹⁴ Rb			

. . .

Energetika

 ${}^{1}_{0}n$

0,25-0,6 MeV

Primární procestrosky162 MeV $\frac{1}{0}$ n6 MeV γ 6 MeV γ 6 MeVSekundární proces β 5 MeV γ 5 MeV

v 11 MeV - kalorimetr naměří 180 MeV vs. výpočet $235*0,9 \approx 211$ MeV rozdíl by způsobila γ , ale zdaleka ne vše... v odnesou podstatnou část energie !!!

Přeměnové řady

 $\begin{array}{ll} Z \; \varepsilon < 30 \; ; \; 65 > & A \; \varepsilon < 72 \; ; \; 161 > \\ < Zn \; ; \; Tb > & \end{array}$

Štěpný výtěžek: Nezávislý Kumulativní Řady

Štěpení ²³⁵ U tepelnými neutrony						
$\sum_{\substack{0\\0\\-1\\-2\\-3\\-4\\-5\\-4\\-5\\-70\\90\\110\\130\\150\\A$	$ \begin{array}{c} $					
A 85-105 Z 35-45 (Br-Rh)	A 130-150 Z 51-62 (Sb-Sm)					
Nuklid (T _{1/2}) σ [%]	Nuklid ($T_{1/2}$) σ [%]					
${}^{95}Zr (66 d) - {}^{95}Nb (35 d) 6,27$ ${}^{99}Mo (67 h) - {}^{99m}Tc (6 h) 6,16$ ${}^{90}Sr (28 r) - {}^{90}Y (64 h) 5,9$	$ \begin{array}{r} {}^{140}\text{Ba}(13\text{ d}) \ - {}^{140}\text{La}(40\text{ h}) \ 6,3 \\ {}^{137}\text{Cs}(30\text{ r}) \ - {}^{137\text{m}}\text{Ba}(2\text{ min})6,18 \\ {}^{144}\text{Ce}(284\text{ d}) - {}^{144}\text{Pr}(14\text{ min})6,0 \end{array} $					

Štěpení tepelnými neutrony

Nuklid	Složené jádro	Lehká A _{max}	Těžká A _{max}
²³² Th	²³³ Th	³³ Th 92	
²³³ U	²³⁴ U	94,5	137
²³⁵ U	²³⁶ U	95	138 🕤
²³⁸ U	²³⁹ U	96	$140 \stackrel{\text{\tiny +}}{\infty}$
²³⁹ Pu	²⁴⁰ Pu	99	139 🗒
²⁴⁵ Cm	²⁴⁶ Cm	103	136
²⁵¹ Cf	²⁵² Cf	108	139

 $Z_{A'} - Z_{P'} = Z_A - Z_P$ - předpoklad: stejná délka řad

Platí: $Z_F = Z_P + Z_{P'}$ A + A' = A + 1 - v

$$Z_P = Z_A - Z_{A'} + Z_{P'}$$
$$Z_P = Z_A - Z_{A'} + Z_F - Z_P$$

Po 1 roce: ${}^{144}Ce + {}^{144}Pr$ 3 letech: ${}^{144}Ce + {}^{144}Pr; {}^{147}Pm; {}^{90}Sr + {}^{90}Y; {}^{137}Cs$ 6 letech: ${}^{90}Sr + {}^{90}Y; {}^{137}Cs; {}^{147}Pm$ >10 let: ${}^{90}Sr + {}^{90}Y; {}^{137}Cs$

Stability against spontaneous fission

Figure 4.12 Comparison of the measured spontaneous fission half lives (•) for e-e nuclei with those expected in a simple droplet model approach (•). (Pat 89)

$$\begin{array}{rcl} {}^{238}_{92}U \begin{pmatrix} {}^{20}_{10}Ne; & 7p; & 9n \end{pmatrix} & {}^{242m_2}_{95}Am & \xrightarrow{T_{SF}=14ms} \\ & \times & T_{SF} \begin{pmatrix} {}^{242}_{95}Am \end{pmatrix} \approx 10^{12} r \end{array}$$

$$k = \frac{N_{n+1}}{N_n}$$
 Řetězové štěpné reakce

m-tá generace $N_m = N_0 \cdot k^m$

$$\mathbf{k} < \mathbf{1} \quad \underline{P\check{r}.:} \ N_0 = 100 \quad k = 0,99 \\ N_m = 1 \text{ pro } m = 454 \\ \sum_{i=0}^{i=1} n = N_0(1 + k + k^2 + ...) = \frac{N_0}{1 - k} = 10^4 \frac{1}{0}n \\ \mathbf{k} = \mathbf{1} \qquad N_i = N_0$$

k > 1 $\frac{dN}{dt} = \frac{N_{n+1} - N_n}{\tau} = N(k-1)\frac{1}{\tau} \longrightarrow N = N_0 e^{(k-1)\frac{1}{\tau}}$ $T = 0.69\frac{\tau}{k-1} \qquad (N_i = 2 \cdot N_0)$

<u>Př.:</u> $N_0 = 100$ k = 1,01 $\tau = 10^{-8}$ s

t [s]	0	10-8	10-7	10-6	10-5	10-4
N [¹ ₀ n]	100	101	110	269	2.106	1045
Nuclear reaction \Rightarrow nucleus recoils (highly charged atom)

- Kinetic (recoil) energy E_r
- Potential energy (excitation)

Undergoes reactions not possible in standard chemistry \Rightarrow

Hot Atom Chemistry

• Velocity

$$v_r = \sqrt{\frac{2E_r \cdot 1.602 \cdot 10^{-19}}{M \cdot 1.660 \cdot 10^{-27}}} = 1.39 \cdot 10^4 \sqrt{\frac{E_r}{M}} \qquad [m.s^{-1}]$$

Temperature

$$T = \frac{2}{3} \frac{E_r}{k} = 7.73.10^3 E_r \qquad [K]$$

- $E_r [eV]$
- *M* [*u*]
- T-[K]
- $k = 8.617.10^{-5} [eV/K]$

Example:

 $E_r = 100 \text{ eV}, M = 100 \Rightarrow$

- $v_r = 1.4.10^4 \text{ m/s} = 14 \text{ km/s} = 50,000 \text{ km/hr}$
- $T = 7.7.10^5 \text{ K}$

N.B. 1^{st} escape velocity = 7.9 km/s 2^{nd} escape velocity = 11.2 km/s 3^{rd} escape velocity = 16.7 km/s

Řádové hodnoty energie, rychlosti a teploty nascentních atomů						
Proces	E _r [eV]	$v_r [m \cdot s^{-1}]$	T [K]			
IP, IK	$10^{1} - 1$	$10^3 - 10^4$	$10^3 - 10^4$			
β ⁻ , β ⁺ , γ	$1 - 10^{2}$	$10^4 - 10^5$	$10^4 - 10^6$			
α, p, d, n	$10^3 - 10^5$	$10^5 - 10^6$	$10^7 - 10^9$			

- 1. Primary processes
 - Nuclear reaction \rightarrow break of bond.
 - Nuclear physics.
 - Fast.
 - $\neq f(T)$, = f(concentration, state,)
- 2. Secondary processes
 - Thermalisation \rightarrow stabilisation in a specific chemical form
 - $\neq f(T)$, = f(concentration, state,)
 - Hot atom chemistry
 - Hot region
 - Epithermal region
- 3. Tertiary processes
 - Standard chemistry
 - = f(T)

Atomic recoil

$$E_{r} = E_{y} \frac{m_{0} + \frac{E_{y}}{2c^{2}}}{M} = E_{y} \frac{m_{0} + \frac{\Delta m}{2}}{M} = E_{y} \frac{m_{ef}}{M}$$

1) $\Delta m \ll m_0$ (heavy particles : α)

$$E_r = E_y \frac{m}{M}$$

2) $m_0 = 0$ (photons)

$$E_r = \frac{E_y^2}{2Mc^2}$$

3) $m_0 \approx \Delta m$ (β^-, β^+, e^-) basic equation

Example:

$$E_{y} = 1 \text{ MeV, } M = 100 \Rightarrow$$
• $\alpha - E_{r} = 40 \text{ keV}$
• $\beta - E_{r} = 12 \text{ eV}$
• $\gamma - E_{r} = 5 \text{ eV}$

Odrazová energie E_r (M = 100)

Recoil of atom bound in a molecule

(energy of chmical bond typically 80-400 kJ/mol, i.e. 1-5 eV) Part of E_r transforms in to **translation** energy E_t Only the rest – the activation energy E_a – available for breaking the bond.

Example:

 $^{79}Br(n,\gamma)^{80}Br+8$ MeV in 2 photons. $E_{\gamma,ef}=5$ MeV $E_r=168$ eV

a) **HBr**

 $M_{Br} = 80$, $M_{H} = 1$, $\Delta H_{dis}(HBr) = 359 \text{ kJ/mol} \approx 3.7 \text{ eV}$

$$E_a = E_r \left(\frac{M'}{M+M'}\right) = 168 \frac{1}{80+1} = 2.1 \, eV$$

 \Rightarrow no break of the bond

b) **RBr**

 $M_{Br} = 80, \ M_{min (methyl)} = 15, \ \Delta H_{dis}(RBr) = 225 \ kJ/mol \approx 2.3 \ eV$ $E_a = E_r \left(\frac{M'}{M+M'}\right) = 168 \frac{15}{80+15} = 26 \ eV$

 \Rightarrow the bond breaks

Reactions of hot atoms in (g) and (l)

Horké reakce:	
Výměnná Př.:	$^{*}X + RX \rightarrow R^{*}X + X$ $CH_{2}^{127}I(n,\gamma)^{128}I$
	$^{128}I + CH_3^{127}I \rightarrow CH_3^{128}I + ^{127}I$
Substituční Př.:	$^{*}X + RR'X \rightarrow R' + R^{*}XX$ $^{*}I + CH_{3}I \rightarrow CH_{2}^{*}II + H^{\bullet}$
	$CH_2BrCOOH(n,\gamma) CH_2*BrBr$
Degradační	$^{*}X + RR'X \rightarrow R^{*}X + R'X$
Pr.:	$\mathbf{I} + \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{I} \rightarrow \mathbf{CH}_{3}\mathbf{I} + \mathbf{CH}_{2}\mathbf{I}$

Termální radikálové reakce (l)

"Vychytávače" radikálů Elementární halogeny Výměny $X_2 + {}^*X \rightarrow X^*X + X^*$ Substituce $X_2 + R^{\bullet} \rightarrow RX + X^{\bullet}$ Deriváty nenasycených uhlovodíků: (adice) $>C=C<+*X \rightarrow *X-C=C-C$ $>C=C<+R^{\bullet} \rightarrow R-C_{-}^{|}C_{$ "Stabilní radikály" $O_2 + R^{\bullet} \rightarrow RO_2$ (g) $NO + R^{\bullet} \rightarrow RNO$

Difenylpikrylhydrazyl (DPPH) (1)

Retence ^{80m}Br při ozáření C₂H₅Br

 $(x(Br_2) - koncentrace vychytávače)$

Reactions of hot atoms in solid phase

Features: small linear range of the atom, long-lasting defects of the crystalline lattice.

- **1. Schottky defect** ions leave the lattice, creating vacancies
- 2. Displacement of another atom
- 3. Vacancy filling
- **4. Frenkel defect** ions leave their lattice sites, creating vacancies, and stabilize in interstitial positions

Annealing MnO₄⁻ po ozáření ¹₀n (,,vyhojovací křivka")

Retence

 n_i chemických forem i = 0 ... původní forma

$$a_i = \frac{N_i^*}{N_i + N_i^*} \approx \frac{A_i}{m_i}$$

Měrná aktivita frakce <u>i</u>

$$\beta_i = \frac{a_i}{a} \approx \frac{A_i}{m_i} \cdot \frac{m}{A}$$

Faktor obohacení frakce i

$$P_i = \frac{N_i^*}{N^*} = \frac{A_i}{A}$$

(Radiochemický) výtěžek v <u>i</u>-té frakci

$$R = P_0 = \frac{N_0^*}{N^*} = 1 - \frac{\sum_{i=1}^n N_i^*}{N^*} = \frac{A_0}{A} \qquad \text{RETENCE}$$

Procesy při reakci (n,γ) $E_r = \frac{E_y^2}{2Mc^2}$ $\sum G y \text{ princ}$ $E_{\gamma} \to \text{MeV}$ $M \to u$ 1 foton

$$E_r = 537 \frac{E_{\gamma}^2}{M} [eV] \qquad E_r = \frac{E_{\gamma}^2}{1862 \cdot M} [MeV]$$
$$E_r = 537 \frac{E_{\gamma}^2}{M'} \cdot \frac{M'}{M}$$

$$E_a = 557 \overline{M} \cdot \overline{M + M'}$$

 $E_a = 537 \frac{1}{M} \cdot \frac{1}{M}$ <u>2 fotony $\checkmark \upsilon$ </u>

$$i^{2} = \frac{E_{1}^{2}}{c^{2}} + \frac{E_{2}^{2}}{c^{2}} + \frac{2E_{1}E_{2}}{c^{2}}\cos\upsilon$$
$$E_{r} = \frac{i^{2}}{2M} = 537\frac{E_{1}^{2} + E_{2}^{2}}{M} + 1074\frac{E_{1}E_{2}}{M}\cos\upsilon[eV]$$

2 fotony, izotropní emise

(rovnoměrná distribuce, max – $\upsilon = 0^{\circ}$, min - $\upsilon = 180^{\circ}$)

$$E_r = 537 \frac{(E_1 \pm E_2)^2}{M} [eV]$$

Szilard + Chalmers

Klasifikace podle terčové sloučeniny. <u>Organické halogenderiváty:</u> •³⁸Cl, ⁸⁰Br, ⁸²Br, ¹²⁸I •Alkyl- i arylhalogenidy •Separace v anorganické frakci, výtěžky 50 – 100 %, anorganické ionty

Klasifikace podle terčové sloučeniny.

Organokovové sloučeniny:

•10 – 90 % různé anorganické formy *Příklady:*

1.Kys. dimetylarsoniová (kakodylová)

⁷⁵As (100 %), $\sigma = 4,3$ b

(n, γ), rozpuštění – 70 – 90 % ⁷⁶As jako ⁷⁶As
O_3⁻ (beznosičový) Jinak jen ⁷⁶Ge(p,n)⁷⁶As

2.8-hydroxychinolinát Ni²⁺ v org. rozpouštědle ⁶⁴Ni (0,91 %), σ = 1,49 b (n,γ), extrakce do vody – až 80 % ⁶⁵Ni jako ⁶⁵Ni²⁺ (beznosičový) Jinak jen ⁶⁵Cu(n,p)⁶⁵Ni

Klasifikace podle terčové sloučeniny.

Bezkyslíkaté anorganické komplexní ionty:

•Uvolnění z komplexního a stabilizace v jednoduchém iontu *Příklady:*

 $1.[Co(NH_3)_6](NO_3)_3$

(n, γ), (rozpuštění) srážení hydroxidu – 80 % ⁶⁰Co³⁺ lze srazit

 $2.NH_4[SbF_6]$

(n, γ), (rozpuštění) srážení – ~ 33 % ¹²⁴Sb se sráží jako sulfid 3.[Fe(CN)₆]^{4–}

(n, γ), ⁵⁹Fe³⁺ lze separovat různě, např. spolusrážení s Al(OH)₃ – 33 %, extrakce etherem – 45 %, na měniči kationtů...

4.H₂ReCl₆

(n, γ), ^{186,188}ReO₄⁻lze separovat různě, $\beta \ge 10^3$

Klasifikace podle terčové sloučeniny. Kyslíkaté anionty polyvalentních prvků: Změna oxidačního stavu Příklady: $1.XO_{3}^{-}$ (X = Cl, Br, I) $(n,\gamma) \to *X^{-}, P = 70-100 \%$ $2.MnO_4^{-}$ $(n,\gamma) \rightarrow Mn^{2+}, Mn^{4+}$ srážení ⁵⁶MnO₂ – ~ 95 %, srážení ⁵⁶MnCO₃ – ~ 70 % $3.PO_4^{3-}$ (obdobně AsO₄³⁻) $(n,\gamma) \rightarrow \sim 50 \%$ jako PO₄³⁻, ~ 50 % HPO₃²⁻ 4.Au Slabě elektropozitivní – $(n,\gamma) \rightarrow {}^{198}Au^0$ $Na_3[Au(S_2O_3)_2] - (n,\gamma) \rightarrow amalgám {}^{198}Au$ $AuCl_3 - (n,\gamma) \rightarrow \sim 80 \%$ ¹⁹⁸Au se zachytí na koloidním zlatě

Klasifikace podle terčové sloučeniny.
<u>Anorganické kovalentní sloučeniny:</u>
Změna chemické formy *Příklady:*1.AsH₃ (g)

(n,γ) → ⁷⁶Asⁿ⁺, lze zachytit na elektrodě

2.H₂S (g)

(n,γ), rozpuštění v H₂O → ~ 98 % ³⁵S⁰, zbytek S²⁻, SO₃²⁻, SO₄²⁻

Heterogenní soustavy:

•Terčová sloučenina dispergována v kapalné fázi (přímo nebo adsorbována na nosiči). Obvykle velké β , ale třeba větší E_r . *Příklady:*

1.Cl₂ adsobován na aktivní uhlí dispergovaném ve vodě $(n,\gamma) \rightarrow \sim 80 \% {}^{38}$ Cl⁻ ve vodné fázi, , $\beta \ge 10^3$

Retence

Primární energetika $R \rightarrow 0$ experiment $R \neq 0$ Sekundární – lze ovlivnit ředění inertem skupenství Terciální – lze ovlivnit teplota čas vychytávače

Retence v organických halogenderivátech

V org. fázi vždy největší výtěžek v terčové sloučenině *Příklad:*

- $CH_3Cl(n,\gamma) \Rightarrow 10$ radioaktivních chloroderivátů
 - Org. fáze $\approx 21 \%$
 - $-\frac{1}{2}$ jako CH₃*Cl
 - Zbytek $CH_2^*ClCl, C_2H_5^*Cl, C_2H_4^*ClCl, C_3H_7^*Cl...$

Retence v organických halogenderivátech

Vliv experimentálních podmínek na retenci

1. Teplota

 Sekundární procesy – žádný vliv: *Příklad:*

CH₃I (n, γ) ⇒ výtěžek CH₂I^{*}I (produkt horké reakce) nezávislý na teplotě Výtěžek = 11 % pro T ∈ <-195°C;15°C>

 Terciální procesy – velký vliv: *Příklad:*

Retence ¹²⁸I při ozařování C₂H₅I

 $- T = 20^{\circ}C - R = 40 \%$

 $- T = 50^{\circ}C - R = 100 \%$

Izotopová výměna $C_2H_5I \Leftrightarrow {}^{128}I_2$

Retence v organických halogenderivátech

Vliv experimentálních podmínek na retenci

2. Skupenství

- Vliv na sekundární i terciální procesy
- Obecně: R(g) < R(l) < R(s) ⇐ roste vliv reakční radikálové klece

Příklad:

Terč. látka	R v (l)	R v (g)
C_2H_5Br	75 %	4,5 %
C_2H_4Br	31 %	6,9 %

Retence v organických halogenderivátech

- Vliv experimentálních podmínek na retenci
- 3. Ředění inertní látkou
- Vliv na sekundární i terciální procesy
- Obecně: Vliv horkých reakcí klesá, vliv terciálních procesů roste ⇒ obvykle menší retence

Příklad:

Retence v CBr₄ při ředění C₂H₅OH

c(CBr ₄) [%]	R [%]	
100	60	
1,15	28	
0,74	13	
0,45	2	
0,064	0	

Retence v organických halogenderivátech

Vliv experimentálních podmínek na retenci

4. Časový faktor

- $\mathbf{R} = \mathbf{f}(\mathbf{t}), t \check{\mathbf{c}}$ as mezi koncem ozařování a separací
- Důsledek terciálních procesů *Příklad:*

Irradiation of CH₃I

	Sonaration	Irradiation			
	Separation	10 min	60 min	120 min	
R [%]	2 min	55 %	60 %	72 %	
	60 min			88 %	

Pseudomonomolekulární výměna $CH_3I \Leftrightarrow {}^{128}I_2$

 \Rightarrow pro T_{irr} > 4•T_{1/2} platí R = konst (T_{1/2}(¹²⁸I) = 25 min)

Retence v organických halogenderivátech

Vliv experimentálních podmínek na retenci

5. Vychytávače

- Vliv na termální radikálové reakce na rozhraní sekundárních a terciálních procesů
- Pro organické halogenderiváty:
 - Elementární halogeny snižují retenci *Příklad:*

Čistý C_2H_5Br : R = 32 %, s 20 % Br_2 : R = 12 %

Nenasycené uhlovodíky – zvyšují retenci (vychytávají radikály

Retence ve vodných roztocích anorganických látek

Sekundární reakce s molekulami vody.

1. $R \neq f(pH)$

Příklad:

- $ClO_4^{-}(n,\gamma) 100 \% {}^{38}Cl^{-} \text{ pro } pH \in \langle 0; 14 \rangle$
- $PO_4^{3-} a HPO_4^{2-} (n,\gamma) R = 50 \% (50 \% jako {}^{32}PO_4^{3-}) pro pH \in <0;14>$

Mechanismus:

- 1. $PO_4^{3-} \rightarrow {}^{32}PO_3^{3-} + O^{\bullet}$ (odtržení O při odrazu)
- 2. $PO_4^{3-} \rightarrow {}^{32}PO_3^{2-} + O^-$ (odtržení O⁻ při odrazu)
- 3. ${}^{32}PO_3{}^{2-}$ (hydrolýza, oxidace) $\rightarrow {}^{32}PO_4{}^{3-}$ Reakce se účastní jen voda \Rightarrow nezávisí na pH

Retence ve vodných roztocích anorganických látek

2. R = f(pH)

Příklad: Závislost retence v KMnO₄ po reakci (n,γ) na pH

Energetika ostatních binukleárních reakcí

$$\overline{E}_{r} = E_{x} \left[\frac{Mm_{x}}{(M+m_{y})^{2}} + \frac{m_{y}(M+m_{y}-m_{x})}{(M+m_{y})^{2}} \cdot \left(1 + \frac{Q}{E_{x}} \cdot \frac{M+m_{y}}{M+m_{y}+m_{x}}\right) \right]$$
$$M \gg m_{x}; M \gg m_{y}$$
$$\overline{E}_{r} = E_{x} \frac{m_{x}}{M} + (E_{x}+Q) \frac{m_{y}}{M}$$

Př.: M = 100; m_x = m_y = 1; Q = E_x = 1 MeV (!) → $\bar{E}_r = 30 \text{ keV}$

 $\begin{aligned} & (\underline{\mathbf{n}}_{\underline{\mathbf{t}}}, \underline{\mathbf{y}}); (\underline{\mathbf{n}}_{\underline{\mathbf{t}}}, \underline{\mathbf{f}}) & \mathbf{E}_{\mathbf{x}} \to \mathbf{0} \\ & \overline{E}_{r} = Q \frac{m_{y}}{M + m_{y}} \left((\mathbf{n}, \mathbf{p}); (\mathbf{n}, \alpha) - \mathbf{Q} \approx 10^{6} \text{ eV}; \frac{\mathbf{m}}{\mathbf{M}} \approx 10^{-2} \right) \\ & \left(\overline{E}_{r} \right)_{\mathbf{i}} = Q \frac{M_{2}}{M_{1} + M_{2}} & \left(\overline{E}_{r} \right)_{\mathbf{2}} = Q \frac{M_{1}}{M_{1} + M_{2}} & \begin{array}{c} (\mathbf{n}, \mathbf{f}) \\ \mathbf{Q} \approx 10^{8}; \frac{\mathbf{M}}{\sum \mathbf{M}} \approx 1/2 \end{aligned}$

Energetika ostatních binukleárních reakcí

$$\overline{E}_{r} = \frac{M}{(M+m_{y})^{2}} \cdot \frac{E_{\gamma}^{2}}{2c^{2}} + \frac{m_{y}}{(M+m_{y})^{2}} \left[(E_{\gamma} + Q) \cdot (M+m_{y}) - \frac{E_{\gamma}^{2}}{2c^{2}} \right]$$

$$E_{\gamma} < 10 \text{ MeV} \rightarrow i_{\gamma} = E_{\gamma}/c \rightarrow 0$$

$$\overline{E}_{r} = (E_{\gamma} + Q) \cdot \frac{m_{y}}{M+m_{y}}$$

$$\underline{P\check{r}.: M = 100; m_{y} = 1; Q = -8 \text{ MeV}; \bar{E}_{\gamma} = 10 \text{ MeV}}$$

$$\rightarrow \bar{E}_{r} = 20 \text{ keV}$$

Výhoda: (x,y) – neizotopní produkt ⇒ běžné separační metody Obecný problém: ozařování v cyklotronu ⇒ pouze pevné látky Důsledek: nejvíce studovány (exoergické) reakce s (tepelnými) neutrony, zejména (n,p) – ³He(n,p)T, ¹⁴N(n,p)¹⁴C, 35Cl(n,p)³²P a endoergická ³²S(n,p)³²P a (n,f)

Reakce při neutronových aktivacích

Třídění podle vznikajícího nuklidu

³H(T) ³He(n,p)T $\sigma = 0,533 \text{ pm}^2 (5330 \text{ b})$ $\overline{E}_r = 191 \text{ keV}$ Tritiace. T⁺(g) – reakce s uhlovodíky: *Příklad:* T⁺ s C₂H₆ – Sekundární r.: C₂H₅T, CH₃T, C₂H₄T[•], CH₂T[•] – Terciální r.: HT ⁶Li(n,\alpha)T $\sigma = 95300 \text{ fm}^2 (953 \text{ b})$ (\overline{E}_r)_T = 2734 keV Velké E_r \Rightarrow lze (s). Ozařování Li₂CO₃ s tritiovanou látkou (např. glukózy). Nespecifická tritiace. ¹⁴C ¹⁴N(n,p)¹⁴C $\sigma = 181 \text{ fm}^2 (1,81 \text{ b})$ $\overline{E}_r = 42 \text{ keV}$

Reakce dle terčové sloučeniny. Využití – značené sloučeniny. Sekundární reakce při rozpouštění.

 $NH_3(n,p) \rightarrow {}^{14}CH_4$ (téměř kvantitativně).

Kyslíkaté sloučeniny N \rightarrow ¹⁴C–O

Nitridy \rightarrow karbidy: Be₂¹⁴C + 4H₂O \rightarrow 2Be(OH)₂ + <u>14CH₄</u>

Amonné soli (síran, bromid): ¹⁴CH₃NH₂ + další (¹⁴C_xH_y, ¹⁴CO_x, ¹⁴CN⁻...) Heterocyklické \rightarrow aromatické – malé procento (př.: chinolin \rightarrow naftalen)

Reakce při neutronových aktivacích

^{32}P $^{32}S(n,p)^{32}P$

Anorganicky vázaná S \rightarrow PO₄^{3–}, PO₃^{3–}, PO₂^{3–}, (PH₃). Preference vyšších valencí Příprava ³²P s vysokou *a*: CS₂ + bílý P, ozáření, vypadne červený P s ³²P

 $^{35}Cl(n,\alpha)^{32}P$

Kyslíkaté anionty $\rightarrow PO_4^{3-}$, Cl⁻ \rightarrow nižší valence

³⁵S ³⁵Cl(n,p)³⁵S $\sigma = 30 \text{ fm}^2 (0,3 \text{ b})$ $\overline{E}_r = 17 \text{ keV}$ Různé formy, převládá ³⁵SO₄^{2–}, ale např. HCl(g): i S⁰ + S^{2–} + SO₃^{2–}... Tuhé látky: velký vliv terciálních reakcí při rozpouštění. *Příklad:*

KCl → v krystalu ³⁵S^{2–}, ³⁵S⁰, ³⁵S–Cl_x, rozpuštění → všechny valence Org. systémy – složité *Příklad*:

NCA ³⁵S: CCl₄(n,p) \rightarrow destilace \rightarrow oxidace \Rightarrow ³⁵SO₄²⁻

Reakce při neutronových aktivacích

- Š.P. 235 U(n,f) $\sigma = 58\ 400\ \text{fm}^2\ (584\ \text{b})$ Fragmenty: $E_r = 40-120\ \text{MeV}$, Q až +20. Stabilizace jako kationt (př. 95 Zr⁴⁺), atom (př. 85 Kr), či aniont. *Příklad:*
 - *I: $I_2 + I^- + IO^- + IO_3^- + IO_4^- poměr ve frakcích různý pro různé izotopy závisí na cestě vzniku (primární odštěpek, sekundární produkt).$

Reakce při aktivaci nabitými částicemi a y

Interference nejaderných účinků – reakce s produkty radiačněchemických reakcí. Třídění podle typu jaderné reakce.

- (p,n) ${}^{34}S(p,n){}^{34}Cl$ Většina Cl jako Cl⁻, vyšší valence zanedbatelné. Nezávisí na terčové formě (např. Na₂SO₄ vs. K₂S₂O₈).
- (d,p) ${}^{34}S(d,p){}^{35}S$ ${}^{35}S$ obvykle ve stejné valenci (formě) jako v terči. *Příklad:* S₀, FeS₂....
- (d, α) ³⁷Cl(d, α)³⁵S ³⁵S obvykle v nízkých valencích. *Příklad:* RbCl \rightarrow S²⁻....

Reakce při aktivaci nabitými částicemi a y

(γ ,n) ^{79,81}Br(γ ,n)^{78,80}Br $E_p = 17 \text{ MeV}$ Obdobně jako při (n, γ). Br obvykle v nízkých valencích. *Příklad:* C₂H₅Br(γ ,n) \rightarrow Br lze extrahovat vodou jako ^{78,80}Br⁻

 ${}^{12}C(\gamma,n){}^{11}C \qquad E_{\gamma,max} = 48 \text{ MeV}$ Různé produkty při reakci v (s) a (l) *Příklad:* CO₂ a uhličitany

- (s) →
$${}^{11}CO + {}^{11}CO_2 - 1 : 1$$

- (l) → 100 % ${}^{11}CO$

T.I. Mechanismus případ od případu Příklad: ²⁷Al(¹⁴N⁶⁺,4p5n)³²P $E_{N-14} = 100 \text{ MeV}$ Mechanismus: elementární P \rightarrow rozpouštění \rightarrow redukce (PH₃) nebo hydrolýza (H₃PO₂) podle podmínek.

Procesy při radioaktivních přeměnách

$$\begin{array}{l} \Omega \\ E_r = E_{\alpha} \frac{m_{\alpha}}{M} = Q \frac{m_{\alpha}}{M + m_{\alpha}} \\ \underline{P\check{r}.:} \, {}^{212}_{83} \mathrm{Bi} \xrightarrow{\alpha} {}^{208}_{81} \mathrm{Tl} \\ E_{\alpha_1} = 6,05 \ \mathrm{MeV} \ (69,9 \ \%) \\ E_{\alpha_2} = 6,09 \ \mathrm{MeV} \ (27,2 \ \%) \\ \end{array} \\ \rightarrow \mathrm{E_r} \ ({}^{208}\mathrm{Tl}) \doteq \underline{116} \ \mathrm{keV} \end{array}$$

"Agregátový odraz" RaA \rightarrow RaB $-{}^{214}Pb^{+}(99+\%)$ $-{}^{214}Pb^{-}(0,001\%)$

 $Rn \rightarrow RaA - {}^{218}Po^{2+}$
Procesy při radioaktivních přeměnách

Procesy při radioaktivních přeměnách

$$\beta \begin{bmatrix} E_r = \frac{E_{\beta}^2}{2Mc^2} + E_{\beta} \frac{m_{\beta}}{M} [J] \\ E_r, \max \\ (E_r = 0) \begin{bmatrix} E_r = 537 \frac{E_{\beta}^2}{M} + 549 \frac{E_{\beta}}{M} = 537 \frac{E_{\beta}}{M} (E_{\beta} + 1,02) [eV] \\ E_r > 0 \\ > \beta v = v \end{bmatrix} E_r = \frac{537}{M} \Big(E_{\beta}^2 + 1,02E_{\beta} + E_{v}^2 + 2E_{v} \sqrt{E_{\beta}^2 + 1,02E_{\beta}} \cos v \Big)$$

E _{β,max} [MeV]	0,1	0,5	1	2	5
E _{r,max} [eV]	0,6	4,1	10,8	32,4	161,6
$\bar{\mathrm{E}}_{\mathrm{r}}\left[\mathrm{eV}\right]$	0,2	1,4	3,6	10,8	53,9

$$\bar{\mathrm{E}}_{\mathrm{r}} = \mathrm{E}_{\mathrm{r,max}} \; / \; 3$$

$${}^{14}\text{CH}_3 - \text{CH}_3 \rightarrow ({}^{14}\text{NH}_3 - \text{CH}_3)^+ \checkmark {}^{14}\text{NH}_3 + \text{CH}_3^+ \\ {}^{14}\text{NH}_2^+ + \text{CH}_4 \\ {}^{14}\text{C: T}_{1/2} = 5730 \text{ r}; \text{ E}_{\beta,\text{max}} = 156 \text{ keV} \\ \text{E}_{r,\text{max}} = 7,0 \text{ eV} \end{cases}$$

EZ

$$E_r = 537 \frac{E_v^2}{M} \approx 537 \frac{Q^2}{M} [eV]$$

$$\underline{P\check{r}.:} \ {}^{37}_{18} Ar \xrightarrow{EZ} \ {}^{37}_{17} Cl + v \quad Q = 814 \text{ keV}$$

$$\rightarrow E_r = \underline{9,6 \text{ eV}}$$

Procesy při emisi
$$\gamma$$
, IP a IK
0 konverze $(E_r)_{\gamma} = 537 \frac{E_{\gamma}^2}{M} [eV]$
100 % konverze $(E_r)_e = 537 \frac{E_{\gamma} - E_{\nu}}{M} (E_{\gamma} - E_{\nu} + 1.02) [eV]$

Q _{IP} [MeV]	0,05	0,1	0,2	0,5
$(\mathrm{E}_{\gamma})_{\gamma} [\mathrm{eV}]$	0,013	0,05	0,21	1,3
$(\mathrm{E}_{\gamma})_{\mathrm{e}} [\mathrm{eV}]$	0,17	0,47	1,16	3,9

Procesy při emisi γ , IP a IK $E = 1,44 \frac{Z_1 \cdot Z_2}{r} [eV] \qquad \begin{array}{c} r \ [nm] \\ Z_1, Z_2 - el. náboje \end{array}$

Odpudivá potenciální energie v CH₃Br [eV]

Náboj CH ₃	Náboj Br									
	1	2	3	4	5	6	7	8	9	10
1	7,6	15,2	23	30	38	46	53	61	68	76
2	15	30	45	60	75	90	105	120	135	150

Př.: Separace izomerů (Segré, 1939): ^{80,80m}Br–C(CH₃)₃

Szilard + Chalmers

